请使用scala和spark mllib 编写一个贝叶斯分类算法
时间: 2024-05-03 18:16:48 浏览: 112
贝叶斯分类算法
4星 · 用户满意度95%
首先,需要导入Spark MLLib的相关包,可以使用以下代码:
```
import org.apache.spark.mllib.classification.NaiveBayes
import org.apache.spark.mllib.classification.NaiveBayesModel
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
```
接下来,我们可以定义一个训练数据集,假设每个数据点有两个特征:
```
val data = Seq(
LabeledPoint(0.0, Vectors.dense(1.0, 0.5)),
LabeledPoint(0.0, Vectors.dense(1.1, 0.6)),
LabeledPoint(1.0, Vectors.dense(3.0, 2.0)),
LabeledPoint(1.0, Vectors.dense(2.9, 2.1))
)
```
然后,我们可以使用NaiveBayes.train方法训练一个贝叶斯分类器:
```
val model = NaiveBayes.train(sc.parallelize(data), lambda = 1.0)
```
其中,lambda是平滑参数,默认值为1.0。
最后,我们可以使用训练好的模型对新的数据进行分类:
```
val testData = Vectors.dense(1.2, 0.7)
val prediction = model.predict(testData)
println(s"Prediction for test data: $prediction")
```
完整的代码示例:
```
import org.apache.spark.mllib.classification.NaiveBayes
import org.apache.spark.mllib.classification.NaiveBayesModel
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
val data = Seq(
LabeledPoint(0.0, Vectors.dense(1.0, 0.5)),
LabeledPoint(0.0, Vectors.dense(1.1, 0.6)),
LabeledPoint(1.0, Vectors.dense(3.0, 2.0)),
LabeledPoint(1.0, Vectors.dense(2.9, 2.1))
)
val model = NaiveBayes.train(sc.parallelize(data), lambda = 1.0)
val testData = Vectors.dense(1.2, 0.7)
val prediction = model.predict(testData)
println(s"Prediction for test data: $prediction")
```
阅读全文