用shufflenetv2做自动识别的智能电子秤的方法及代码
时间: 2023-06-25 12:01:56 浏览: 166
电子秤源代码
ShuffleNetV2是一种轻量级卷积神经网络,适合用于移动设备和嵌入式设备等资源受限的场景。下面是使用ShuffleNetV2实现智能电子秤自动识别的方法和代码:
1. 数据准备:收集电子秤图片数据集,并且标注好每张图片的类别。
2. 数据预处理:将图片缩放为相同的大小,并且进行归一化处理。
3. 构建模型:使用ShuffleNetV2作为分类器模型,可以使用TensorFlow或PyTorch等深度学习框架进行模型构建。
4. 模型训练:使用训练集对模型进行训练,并且使用验证集进行模型的调优。
5. 模型评估:使用测试集对模型进行评估,并且计算模型的准确率、精确率、召回率等指标。
6. 模型部署:将训练好的模型部署到电子秤上,可以使用TensorFlow Lite或PyTorch Mobile等工具对模型进行转换和优化。
下面是使用TensorFlow实现的ShuffleNetV2代码示例:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, ReLU
from tensorflow.keras.layers import DepthwiseConv2D, GlobalAveragePooling2D
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
def shuffle_block(x, out_channels, stride):
# 定义ShuffleNetV2的基本单元:ShuffleBlock
channels = x.shape[-1]
if stride != 1 or channels != out_channels:
# 下采样或通道数不同时,使用1x1卷积进行调整
shortcut = Conv2D(out_channels, 1)(x)
shortcut = BatchNormalization()(shortcut)
else:
shortcut = x
# 分组卷积
x = DepthwiseConv2D(3, stride, padding='same', groups=channels)(x)
x = BatchNormalization()(x)
x = ReLU()(x)
# 通道重组
x = Conv2D(out_channels, 1)(x)
x = BatchNormalization()(x)
x = ReLU()(x)
x = DepthwiseConv2D(3, 1, padding='same', groups=out_channels)(x)
x = BatchNormalization()(x)
# 通道重组
x = Conv2D(out_channels, 1)(x)
x = BatchNormalization()(x)
x = ReLU()(x)
# 通道重组
x = tf.concat([x, shortcut], axis=-1)
x = tf.nn.depth_to_space(x, 2)
return x
def shuffle_netv2(input_shape, num_classes):
# 构建ShuffleNetV2模型
inputs = Input(shape=input_shape)
x = Conv2D(24, 3, strides=2, padding='same')(inputs)
x = BatchNormalization()(x)
x = ReLU()(x)
x = MaxPooling2D(3, strides=2, padding='same')(x)
x = shuffle_block(x, 24, 1)
x = shuffle_block(x, 24, 1)
x = shuffle_block(x, 24, 2)
x = shuffle_block(x, 48, 1)
x = shuffle_block(x, 48, 1)
x = shuffle_block(x, 48, 2)
x = shuffle_block(x, 96, 1)
x = shuffle_block(x, 96, 1)
x = shuffle_block(x, 96, 2)
x = GlobalAveragePooling2D()(x)
x = Dropout(0.5)(x)
x = Dense(num_classes, activation='softmax')(x)
model = Model(inputs=inputs, outputs=x)
return model
# 训练模型
model = shuffle_netv2((224, 224, 3), 2)
optimizer = Adam(learning_rate=0.001)
model.compile(optimizer=optimizer,
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_data, epochs=10, validation_data=val_data)
# 评估模型
test_loss, test_acc = model.evaluate(test_data)
print('Test accuracy:', test_acc)
# 保存模型
model.save('shuffle_netv2.h5')
```
注意:以上代码仅供参考,具体实现需要根据数据集和场景进行调整和优化。
阅读全文