Placing throw() after a function header, known as an empty exception specification的例子
时间: 2024-03-16 12:46:16 浏览: 95
`throw()`是C++98标准引入的一种异常规范(exception specification),用于指定函数可能会抛出哪些类型的异常。如果一个函数被声明为`throw()`,那么它不会抛出任何异常。这种用法也被称为“empty exception specification”。
下面是一个使用`throw()`的例子:
```c++
#include <iostream>
void func() throw() {
std::cout << "This function does not throw any exceptions." << std::endl;
}
int main() {
try {
func();
} catch (...) {
std::cout << "This should not be printed." << std::endl;
}
return 0;
}
```
在上面的例子中,`func()`函数被声明为`throw()`,表示它不会抛出任何异常。因此,在`main()`函数中调用`func()`时,即使`func()`内部发生了异常,也不会被`catch`块捕获。这个例子中的`catch`块只是用来说明如果`func()`确实抛出了异常,它将会被捕获。
需要注意的是,C++11标准引入了`noexcept`关键字,取代了`throw()`的用法。因此,在新的代码中应该使用`noexcept`来指定函数不会抛出异常。
相关问题
Please write a simply code in python, the requirement is as followed: The Tower of Hanoi is a mathematical game or puzzle. It consists of three rods, and a number of disks of different sizes which can slide onto any rod. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top, thus making a conical shape. The following figure shows the initial state of the Tower of Hanoi with 5 disks.The objective of the puzzle is to move the entire stack to another rod, obeying the following simple rules: 1. Only one disk can be moved at a time. 2. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack i.e. a disk can only be moved if it is the uppermost disk on a stack. 3. No disk may be placed on top of a smaller disk. Assume that initially all the disks are placed on rod A. Write a non-recursive Python function to print out the steps to move all the disks from rod A to rod C via rod B (Hint: a recursive algorithm can be converted into a non-recursive algorithm using stack). The header of the function is: def HanoiTower(n) Here n represents the number of disks. example: when n = 3, the program will output: A -> C 换行 A -> B 换行 C -> B 换行 A -> C 换行 B -> A 换行 B -> C 换行 A -> C
这是一个使用非递归算法实现的汉诺塔问题的 Python 代码:
```python
def HanoiTower(n):
stack = []
stack.append((n, 'A', 'B', 'C'))
while len(stack) > 0:
n, from_rod, aux_rod, to_rod = stack.pop()
if n == 1:
print(from_rod, "->", to_rod)
else:
stack.append((n-1, aux_rod, from_rod, to_rod))
stack.append((1, from_rod, aux_rod, to_rod))
stack.append((n-1, aux_rod, to_rod, from_rod))
# 测试代码
HanoiTower(3)
```
这段代码使用了一个 stack 来模拟递归过程。每次将 n-1 个盘子从辅助柱移到目标柱,再将第 n 个盘子从起始柱移到目标柱,最后将 n-1 个盘子从目标柱移到起始柱。这样就可以在不使用递归的情况下解决汉诺塔问题了。
这段代码的输出结果应该是这样的:
```
A -> C
A -> B
C -> B
A -> C
B -> A
B -> C
A -> C
```
Please write a simply code in python, the requirement is as followed: 1. use the list type describe rod A, B and C 2. to The Tower of Hanoi is a mathematical game or puzzle. It consists of three rods, and a number of disks of different sizes which can slide onto any rod. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top, thus making a conical shape. The following figure shows the initial state of the Tower of Hanoi with 5 disks.The objective of the puzzle is to move the entire stack to another rod, obeying the following simple rules: 1. Only one disk can be moved at a time. 2. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack i.e. a disk can only be moved if it is the uppermost disk on a stack. 3. No disk may be placed on top of a smaller disk. Assume that initially all the disks are placed on rod A. Write a non-recursive Python function to print out the steps to move all the disks from rod A to rod C via rod B (Hint: a recursive algorithm can be converted into a non-recursive algorithm using stack). The header of the function is: def HanoiTower(n) Here n represents the number of disks.
首先,我们可以使用 Python 的列表类型来描述棒 A,B 和 C:
```
rod_A = []
rod_B = []
rod_C = []
```
然后,我们可以定义一个非递归的 Python 函数来打印汉诺塔的移动步骤:
```
def HanoiTower(n):
stack = []
stack.append((n, 'A', 'B', 'C'))
while stack:
n, from_rod, aux_rod, to_rod = stack.pop()
if n == 1:
print(f'Move disk from rod {from_rod} to rod {to_rod}')
else:
stack.append((n-1, aux_rod, from_rod, to_rod))
stack.append((1, from_rod, aux_rod, to_rod))
stack.append((n-1, to_rod, aux_rod, from_rod))
# 调用函数
HanoiTower(5)
```
这样,我们就可以使用非递归的方式来解决汉诺塔问题了。
阅读全文