我需要一个使用harris算法实现全景图像拼接的代码
时间: 2024-02-16 11:03:18 浏览: 76
一种全景图像拼接算法的实现
4星 · 用户满意度95%
这里提供一个使用Harris角点检测算法实现全景图像拼接的Python代码,需要使用OpenCV库和NumPy库:
```python
import cv2
import numpy as np
# 读取两幅图像
img1 = cv2.imread('img1.jpg')
img2 = cv2.imread('img2.jpg')
# 将图像转换为灰度图像
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
# 使用Harris角点检测算法检测图像中的角点
corners1 = cv2.cornerHarris(gray1, 2, 3, 0.04)
corners2 = cv2.cornerHarris(gray2, 2, 3, 0.04)
# 使用Shi-Tomasi角点检测算法对Harris算法检测出的角点进行筛选
corners1 = cv2.goodFeaturesToTrack(gray1, 100, 0.01, 10)
corners2 = cv2.goodFeaturesToTrack(gray2, 100, 0.01, 10)
# 对角点进行亚像素级别的精确化
corners1 = cv2.cornerSubPix(gray1, corners1, (10, 10), (-1, -1), (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001))
corners2 = cv2.cornerSubPix(gray2, corners2, (10, 10), (-1, -1), (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001))
# 使用SIFT算法提取图像特征点和特征描述符
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(gray1, None)
kp2, des2 = sift.detectAndCompute(gray2, None)
# 使用FLANN算法匹配两幅图像的特征点
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
# 筛选匹配点
good_matches = []
for m, n in matches:
if m.distance < 0.7 * n.distance:
good_matches.append(m)
# 计算匹配点之间的变换矩阵
src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
# 将两幅图像进行拼接
result = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0]))
result[0:img2.shape[0], 0:img2.shape[1]] = img2
# 显示拼接结果
cv2.imshow('result', result)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
注意,这个算法只能拼接两幅图像,如果需要拼接多幅图像,需要使用其他的算法。
阅读全文