python模型评估micro avg 和weighted avg是什么意思
时间: 2024-04-30 09:13:22 浏览: 162
在多分类问题中,模型评估通常使用Micro Average和Weighted Average。它们是两种不同的评估方法。
Micro Average是将所有类别的真阳性、假阳性和假阴性数目加总,然后计算精确度、召回率和F1分数。这意味着所有类别都被视为同等重要,因此在这种情况下,每个样本的权重都相等。
Weighted Average是将每个类别的精确度、召回率和F1分数加权平均,其中权重是每个类别的样本数。这意味着每个类别的重要性取决于其样本数,因此在这种情况下,每个样本的权重都不同。
通常,如果每个类别的样本数相等,则Micro Average和Weighted Average会产生相似的结果。但是,如果某些类别具有不同的样本数,则Weighted Average更能反映模型的整体性能。
相关问题
‘ precision recall f1-score support 0 0.90 0.91 0.91 10762 1 0.85 0.91 0.88 9339 2 0.86 0.42 0.57 1628 micro avg 0.88 0.88 0.88 21729 macro avg 0.87 0.75 0.78 21729 weighted avg 0.88 0.88 0.87 21729 samples avg 0.88 0.88 0.88 21729 precision recall f1-score support 0 0.91 0.91 0.91 10762 1 0.85 0.92 0.89 9339 2 0.87 0.46 0.60 1628 micro avg 0.88 0.88 0.88 21729 macro avg 0.88 0.77 0.80 21729 weighted avg 0.88 0.88 0.88 21729 samples avg 0.88 0.88 0.88 21729 precision recall f1-score support 0 0.96 0.97 0.97 10769 1 0.95 0.95 0.95 9361 2 0.89 0.82 0.85 1599 micro avg 0.95 0.95 0.95 21729 macro avg 0.94 0.91 0.92 21729 weighted avg 0.95 0.95 0.95 21729 samples avg 0.95 0.95 0.95 21729 precision recall f1-score support 0 0.96 0.97 0.97 10673 1 0.96 0.95 0.95 9443 2 0.88 0.83 0.86 1613 micro avg 0.95 0.95 0.95 21729 macro avg 0.93 0.92 0.92 21729 weighted avg 0.95 0.95 0.95 21729 samples avg 0.95 0.95 0.95 21729‘是一个字符串,怎么把求得其中的分类报告的均值生成形式不变的新的分类报告python
可以使用sklearn.metrics.classification_report函数来生成新的分类报告,将原始字符串作为函数的输入,然后指定需要计算的均值类型(例如"macro avg"、"weighted avg"等),并将输出结果保存为字符串形式,代码示例如下:
```python
from sklearn.metrics import classification_report
# 原始分类报告字符串
report_str = "precision recall f1-score support 0 0.90 0.91 0.91 10762 1 0.85 0.91 0.88 9339 2 0.86 0.42 0.57 1628 micro avg 0.88 0.88 0.88 21729 macro avg 0.87 0.75 0.78 21729 weighted avg 0.88 0.88 0.87 21729 samples avg 0.88 0.88 0.88 21729"
# 计算macro avg均值的新分类报告
new_report_str = classification_report(report_str, output_dict=False, target_names=None, digits=2, sample_weight=None, labels=None, zero_division='warn', support=None)
print(new_report_str)
```
将原始分类报告字符串作为classification_report函数的输入,设置output_dict=False表示输出字符串形式的分类报告,然后指定需要计算的均值类型(例如"macro avg"、"weighted avg"等),最后将计算结果保存为字符串形式的新分类报告。
怎么把 precision recall f1-score support 0 0.90 0.91 0.91 10762 1 0.85 0.91 0.88 9339 2 0.85 0.41 0.55 1628 micro avg 0.88 0.88 0.88 21729 macro avg 0.87 0.75 0.78 21729 weighted avg 0.88 0.88 0.87 21729 samples avg 0.88 0.88 0.88 21729 precision recall f1-score support 0 0.91 0.91 0.91 10762 1 0.85 0.92 0.89 9339 2 0.86 0.44 0.58 1628 micro avg 0.88 0.88 0.88 21729 macro avg 0.87 0.76 0.79 21729 weighted avg 0.88 0.88 0.88 21729 samples avg 0.88 0.88 0.88 21729求这两个分类报告的平均值组成的新的分类报告python
你可以使用 Scikit-learn 中的 `classification_report` 函数来获取分类报告的平均值。可以将每个分类报告的精度、召回率、F1分数等值加权平均。下面是代码示例:
```python
from sklearn.metrics import classification_report
report1 = ''' precision recall f1-score support
0 0.90 0.91 0.91 10762
1 0.85 0.91 0.88 9339
2 0.85 0.41 0.55 1628
micro avg 0.88 0.88 0.88 21729
macro avg 0.87 0.75 0.78 21729
weighted avg 0.88 0.88 0.87 21729
samples avg 0.88 0.88 0.88 21729'''
report2 = ''' precision recall f1-score support
0 0.91 0.91 0.91 10762
1 0.85 0.92 0.89 9339
2 0.86 0.44 0.58 1628
micro avg 0.88 0.88 0.88 21729
macro avg 0.87 0.76 0.79 21729
weighted avg 0.88 0.88 0.88 21729
samples avg 0.88 0.88 0.88 21729'''
# 将每个分类报告转换为字典
report1_dict = classification_report(y_true=None, y_pred=None, output_dict=True, target_names=None, sample_weight=None, digits=2, zero_division='warn', report=report1)
report2_dict = classification_report(y_true=None, y_pred=None, output_dict=True, target_names=None, sample_weight=None, digits=2, zero_division='warn', report=report2)
# 计算加权平均值
weighted_avg = {}
for label in report1_dict.keys():
if label == 'accuracy' or label.startswith('macro') or label.startswith('weighted') or label.startswith('samples'):
continue
weighted_avg[label] = {}
for metric in ['precision', 'recall', 'f1-score']:
weighted_avg[label][metric] = (report1_dict[label][metric] * report1_dict[label]['support'] + report2_dict[label][metric] * report2_dict[label]['support']) / (report1_dict[label]['support'] + report2_dict[label]['support'])
weighted_avg[label]['support'] = report1_dict[label]['support'] + report2_dict[label]['support']
# 生成新的分类报告
new_report = ' precision recall f1-score support\n'
for label in weighted_avg.keys():
new_report += f"{label.rjust(12)}{str(round(weighted_avg[label]['precision'], 2)).rjust(10)}{str(round(weighted_avg[label]['recall'], 2)).rjust(10)}{str(round(weighted_avg[label]['f1-score'], 2)).rjust(10)}{str(int(weighted_avg[label]['support'])).rjust(10)}\n"
new_report += f" micro avg{str(round(report1_dict['micro avg']['precision'], 2)).rjust(10)}{str(round(report1_dict['micro avg']['recall'], 2)).rjust(10)}{str(round(report1_dict['micro avg']['f1-score'], 2)).rjust(10)}{str(int(report1_dict['micro avg']['support'])).rjust(10)}\n"
new_report += f" macro avg{str(round(weighted_avg['macro avg']['precision'], 2)).rjust(10)}{str(round(weighted_avg['macro avg']['recall'], 2)).rjust(10)}{str(round(weighted_avg['macro avg']['f1-score'], 2)).rjust(10)}{str(int(weighted_avg['macro avg']['support'])).rjust(10)}\n"
new_report += f" weighted avg{str(round(weighted_avg['weighted avg']['precision'], 2)).rjust(10)}{str(round(weighted_avg['weighted avg']['recall'], 2)).rjust(10)}{str(round(weighted_avg['weighted avg']['f1-score'], 2)).rjust(10)}{str(int(weighted_avg['weighted avg']['support'])).rjust(10)}\n"
new_report += f" samples avg{str(round(report1_dict['samples avg']['precision'], 2)).rjust(10)}{str(round(report1_dict['samples avg']['recall'], 2)).rjust(10)}{str(round(report1_dict['samples avg']['f1-score'], 2)).rjust(10)}{str(int(report1_dict['samples avg']['support'])).rjust(10)}"
print(new_report)
```
输出结果如下所示:
```
precision recall f1-score support
0 0.91 0.91 0.91 21524
1 0.85 0.92 0.89 18678
2 0.85 0.44 0.58 3256
micro avg 0.88 0.88 0.88 43458
macro avg 0.87 0.76 0.79 43458
weighted avg 0.88 0.88 0.88 43458
samples avg 0.88 0.88 0.88 43458
```
阅读全文