用pytorch写一个fashionmnist分类设计代码进行识别生成预测曲线图和训练曲线图

时间: 2024-05-06 12:15:36 浏览: 14
好的,以下是基于PyTorch的Fashion-MNIST分类的代码,包括训练过程中的预测曲线图和训练曲线图。 首先,我们需要导入所需的库: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt import numpy as np ``` 然后,我们需要定义数据集和数据加载器: ```python # 定义数据预处理的转换 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) # 加载训练集和测试集 trainset = torchvision.datasets.FashionMNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = torchvision.datasets.FashionMNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) # 定义类别名称 classes = ('T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot') ``` 接下来,我们需要定义模型: ```python class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() ``` 然后,我们需要定义损失函数和优化器: ```python criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) ``` 接下来,我们可以开始训练过程: ```python # 训练模型 losses = [] accuracies = [] epochs = 10 for epoch in range(epochs): running_loss = 0.0 total_loss = 0.0 correct = 0.0 total = 0.0 for i, data in enumerate(trainloader, 0): # 获取输入数据 inputs, labels = data # 梯度清零 optimizer.zero_grad() # 前向传播、反向传播、优化 outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 统计损失和准确率 running_loss += loss.item() total_loss += loss.item() _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() # 每2000个mini-batch打印一次信息 if i % 2000 == 1999: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 # 记录训练过程中的损失和准确率 losses.append(total_loss / len(trainset)) accuracies.append(100.0 * correct / total) print('Finished Training') ``` 最后,我们可以使用测试集来评估模型的性能,并绘制预测曲线图和训练曲线图: ```python # 测试模型 correct = 0.0 total = 0.0 with torch.no_grad(): for data in testloader: inputs, labels = data outputs = net(inputs) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) # 绘制预测曲线图 images, labels = iter(testloader).next() outputs = net(images) _, predicted = torch.max(outputs, 1) fig, ax = plt.subplots(figsize=(8, 4)) ax.plot(np.arange(len(classes)), np.zeros(len(classes)), 'o', label='True') ax.plot(np.arange(len(classes)), np.zeros(len(classes)), 'x', label='Predicted') ax.set_xticks(np.arange(len(classes))) ax.set_xticklabels(classes, rotation=45) ax.set_ylim([0, 1.1]) ax.legend() for i in range(len(images)): ax.plot(labels[i], 0, 'o', color='blue') ax.plot(predicted[i], 0, 'x', color='red') plt.show() # 绘制训练曲线图 fig, ax1 = plt.subplots() color = 'tab:red' ax1.set_xlabel('Epoch') ax1.set_ylabel('Loss', color=color) ax1.plot(np.arange(epochs), losses, color=color) ax1.tick_params(axis='y', labelcolor=color) ax2 = ax1.twinx() color = 'tab:blue' ax2.set_ylabel('Accuracy', color=color) ax2.plot(np.arange(epochs), accuracies, color=color) ax2.tick_params(axis='y', labelcolor=color) fig.tight_layout() plt.show() ``` 这样就完成了Fashion-MNIST分类的代码,并且绘制了预测曲线图和训练曲线图。

相关推荐

最新推荐

recommend-type

使用PyTorch训练一个图像分类器实例

今天小编就为大家分享一篇使用PyTorch训练一个图像分类器实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

pytorch 利用lstm做mnist手写数字识别分类的实例

今天小编就为大家分享一篇pytorch 利用lstm做mnist手写数字识别分类的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Pytorch实现的手写数字mnist识别功能完整示例

主要介绍了Pytorch实现的手写数字mnist识别功能,结合完整实例形式分析了Pytorch模块手写字识别具体步骤与相关实现技巧,需要的朋友可以参考下
recommend-type

pytorch实现mnist分类的示例讲解

今天小编就为大家分享一篇pytorch实现mnist分类的示例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

今天小编就为大家分享一篇Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节 线性代数的核心问题是求解方程组。这些方程都是线性的,即未知数仅与数相乘——我们绝不会 遇见 x 乘以 y。我们的第一个线性方程组较小。接下来你来看看它引申出多远: 两个方程 两个未知数 x − 2y = 1 3x + 2y = 11 (1) 我们一次从一个行开始。第一个方程 x − 2y = 1 得出了 xy 平面的一条直线。由于点 x = 1, y = 0 解 出该方程,因此它在这条直线上。因为 3 − 2 = 1,所以点 x = 3, y = 1 也在这条直线上。若我们选择 x = 101,那我们求出 y = 50。 这条特定直线的斜率是 12,是因为当 x 变化 2 时 y 增加 1。斜率在微积分中很重要,然而这是线 性代数! 图 2.1 将展示第一条直线 x − 2y = 1。此“行图”中的第二条直线来自第二个方程 3x + 2y = 11。你 不能错过两条线的交点 x = 3, y = 1。点 (3, 1) 位于两条线上并且解出两个方程。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

识别MATLAB微分方程求解中的混沌行为:分析非线性方程混沌行为的实用技巧

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程是描述物理、工程和金融等领域中动态系统的数学模型。MATLAB提供了强大的工具来求解微分方程,包括内置求解器和自定义函数
recommend-type

physon如何做ERP系统

作为一个AI语言模型,我可以给您提供一些基本的建议和思路: 1.明确需求和目标:在开始开发ERP系统之前,需要明确您的业务需求和目标,了解您的业务流程、流程数据、员工角色和权限、财务管理等方面的要求,这样才能更好的设计和开发ERP系统。 2.选择技术框架和开发工具:选择合适的技术框架和开发工具是ERP系统开发的关键。选择一种流行的技术框架和工具可以提高开发效率和质量。 3.设计数据库:ERP系统需要一个功能强大的数据库来存储数据。设计数据库需要考虑数据的完整性、安全性和可扩展性。 4.设计系统架构:系统架构是ERP系统的骨架,需要考虑系统的可扩展性、可维护性和性能。 5.开发和测试:
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。