用c++编写程序:已知两个不同的二维向量,求这两个向量间的旋转矩阵,平移向量,缩放比例,并把第二个向量转换到第一个向量的坐标系中

时间: 2024-02-01 18:15:24 浏览: 32
以下是一个简单的 C++ 程序,用于计算两个二维向量之间的旋转矩阵、平移向量和缩放比例,并将第二个向量转换为第一个向量的坐标系中: ```cpp #include <iostream> #include <cmath> using namespace std; // 定义二维向量结构体 struct Vector2D { double x; double y; }; // 计算向量的模长 double length(Vector2D v) { return sqrt(v.x * v.x + v.y * v.y); } // 计算向量的单位向量 Vector2D normalize(Vector2D v) { double len = length(v); Vector2D result = { v.x / len, v.y / len }; return result; } // 计算两个向量的夹角(弧度制) double angle(Vector2D v1, Vector2D v2) { double dot = v1.x * v2.x + v1.y * v2.y; double len1 = length(v1); double len2 = length(v2); return acos(dot / (len1 * len2)); } // 计算旋转矩阵、平移向量和缩放比例 void transform(Vector2D v1, Vector2D v2, double& scale, double& angle, Vector2D& translate) { // 计算向量的夹角和旋转角度 double a = angle(v1, v2); angle = a * 180 / M_PI; // 计算缩放比例 scale = length(v2) / length(v1); // 计算平移向量 Vector2D n1 = normalize(v1); Vector2D n2 = normalize(v2); double d = length(v2) * cos(a); translate = { (n2.x - n1.x * scale) * d, (n2.y - n1.y * scale) * d }; } // 将向量 v2 转换为向量 v1 的坐标系中 Vector2D transformCoordinate(Vector2D v1, Vector2D v2, double scale, double angle, Vector2D translate) { // 计算旋转矩阵 double a = angle * M_PI / 180; double c = cos(a); double s = sin(a); Vector2D r1 = { c, s }; Vector2D r2 = { -s, c }; // 计算向量的坐标 Vector2D r = { (v2.x - translate.x) / scale, (v2.y - translate.y) / scale }; Vector2D result = { r.x * r1.x + r.y * r1.y, r.x * r2.x + r.y * r2.y }; return result; } int main() { // 定义两个向量 Vector2D v1 = { 1, 0 }; Vector2D v2 = { 3, 2 }; // 计算旋转矩阵、平移向量和缩放比例 double scale, angle; Vector2D translate; transform(v1, v2, scale, angle, translate); // 输出结果 cout << "scale = " << scale << endl; cout << "angle = " << angle << endl; cout << "translate = (" << translate.x << ", " << translate.y << ")" << endl; // 将向量 v2 转换为向量 v1 的坐标系中 Vector2D v3 = transformCoordinate(v1, v2, scale, angle, translate); cout << "v2 in v1's coordinate system: (" << v3.x << ", " << v3.y << ")" << endl; return 0; } ``` 该程序首先定义了一个 `Vector2D` 结构体,用于表示二维向量。然后定义了一些向量操作的辅助函数,例如计算向量的模长、计算向量的单位向量、计算两个向量的夹角等。 接下来,`transform` 函数计算两个向量之间的旋转矩阵、平移向量和缩放比例。其中,旋转角度通过计算两个向量的夹角得到,缩放比例为第二个向量的模长除以第一个向量的模长,平移向量通过计算两个向量在第一个向量的坐标系中的距离得到。 最后,`transformCoordinate` 函数将第二个向量转换为第一个向量的坐标系中。该函数首先计算旋转矩阵,然后计算第二个向量在第一个向量的坐标系中的坐标。

相关推荐

最新推荐

recommend-type

C++ Eigen库计算矩阵特征值及特征向量

在线性代数中,矩阵的特征值和特征向量是矩阵的两个重要特征。特征值是矩阵的一种 scalar,满足特征方程式 Ax = λx,其中A是矩阵,x是特征向量,λ是特征值。特征向量是满足 Ax = λx 的非零向量x。 使用Eigen库...
recommend-type

求平面内两个向量的夹角

这个文档,介绍了平面内,求两个向量的夹角的算法,同时附上了C++的算法实现。很简单,希望可以帮助到需要的朋友
recommend-type

C++实现两个有序数组的合并

C++实现两个有序数组的合并 在本篇文章中,我们将详细介绍如何使用C++语言实现两个有序数组的合并。数组合并是数据结构和算法中的一种常见操作,掌握数组合并的技巧对于提高编程技能非常重要。 数组合并的概念 数...
recommend-type

C++二维动态数组的创建与删除

C++中用new动态创建二维数组的格式一般是这样:TYPE (*p)[N] = new TYPE [][N]; 其中,TYPE是某种类型,N是二维数组的列数。采用这种格式,列数必须指出,而行数无需指定。在这里,p的类型是TYPE*[N],即是指向一个...
recommend-type

用C++编写的求可逆矩阵的程序

总体需求:编写一个实现求矩阵逆矩阵的程序。 功能需求: 1) 输入一个n(n)阶方阵A, 2) 求出A的逆矩阵B,并输出。 3) 将A和B相乘得矩阵C,验证C是否为单位矩阵。 用户界面的结果显示: 输入: 程序正常运行后,...
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。