通过stm32f103c8t6stlinkv2右侧连接数据线连接电脑是什么样的连接
时间: 2023-08-08 07:13:57 浏览: 138
使用STM32F103C8T6开发板配合ST-Link/V2调试器连接到电脑的步骤如下:
1. 将STM32F103C8T6开发板与ST-Link/V2调试器通过JTAG/SWD接口连接起来。开发板上通常有一个标有"SWDIO"和"SWCLK"的10针排针接口。将ST-Link/V2调试器的对应引脚连接到开发板上。
2. 将ST-Link/V2调试器的USB接口连接到电脑上。
3. 确保你已经安装了ST-Link/V2驱动程序。你可以从STMicroelectronics官方网站上下载并安装ST-Link/V2驱动程序。
4. 打开开发环境(如Keil、IAR等),选择正确的目标设备(STM32F103C8T6)和调试器(ST-Link/V2)。
5. 在开发环境中选择下载或调试程序的选项,连接到目标设备。
这样,STM32F103C8T6开发板就可以通过ST-Link/V2调试器与电脑进行连接。你可以使用开发环境进行编程、烧录和调试。请注意,具体的连接方式可能会因不同的开发板和调试器而有所不同,因此请参考相关文档和资料以确保正确连接。
相关问题
基于stm32f103c8t6超声波测距源码及接线(已调)_stm32f103c8t6例程_stm32_超声波_s
### 回答1:
stm32f103c8t6是一款常用的单片机开发板,可以用来实现超声波测距功能。超声波测距是利用超声波的传播速度来测量距离的一种技术。
首先,我们需要连接超声波传感器和stm32f103c8t6开发板。超声波传感器一般有两个引脚:Trig和Echo。Trig用于发送超声波信号,Echo用于接收超声波信号。
接线时,将Trig引脚连接到stm32f103c8t6开发板上的一个GPIO引脚,例如PA0。将Echo引脚连接到stm32f103c8t6开发板上的另一个GPIO引脚,例如PA1。
接线完成后,我们可以开始编写源码来实现超声波测距功能。以下是一个简单的示例代码:
#include "stm32f10x.h"
// 定义Trig引脚所在的GPIO端口和引脚号
#define TRIG_GPIO GPIOA
#define TRIG_PIN GPIO_Pin_0
// 定义Echo引脚所在的GPIO端口和引脚号
#define ECHO_GPIO GPIOA
#define ECHO_PIN GPIO_Pin_1
// 声明超声波测距函数
float measureDistance();
int main(void)
{
// 初始化GPIO
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
GPIO_InitStructure.GPIO_Pin = TRIG_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(TRIG_GPIO, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = ECHO_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(ECHO_GPIO, &GPIO_InitStructure);
while(1)
{
float distance = measureDistance();
// 在这里处理测量到的距离数据
delay_ms(500); // 延时500毫秒
}
}
// 超声波测距函数
float measureDistance()
{
// 发送一个10us的高电平脉冲
GPIO_SetBits(TRIG_GPIO, TRIG_PIN);
delay_us(10);
GPIO_ResetBits(TRIG_GPIO, TRIG_PIN);
// 等待Echo引脚变为高电平
while (GPIO_ReadInputDataBit(ECHO_GPIO, ECHO_PIN) == 0);
// 开始计时
uint32_t start_time = TIM3->CNT;
// 等待Echo引脚变为低电平
while(GPIO_ReadInputDataBit(ECHO_GPIO, ECHO_PIN) == 1);
// 结束计时
uint32_t end_time = TIM3->CNT;
// 计算超声波传播时间
uint32_t duration = end_time - start_time;
// 计算距离
float distance = duration * 0.034 / 2;
return distance;
}
上述代码中,我们首先通过“RCC_APB2PeriphClockCmd”函数使能GPIOA的时钟。然后分别对Trig和Echo引脚进行初始化,将Trig引脚设置为输出模式,将Echo引脚设置为输入上拉模式。
在主函数中,我们使用一个无限循环实现连续测量。调用“measureDistance”函数测量距离,并将距离数据保存在变量“distance”中。我们可以在需要的地方处理测量到的距离数据。
在“measureDistance”函数中,我们首先发送一个10us的高电平脉冲,并使用延时函数等待Echo引脚变为高电平。然后开始计时,继续等待Echo引脚变为低电平,结束计时。通过计算传播时间,可以计算出距离,并将结果返回。
需要注意的是,示例代码中使用了延时函数“delay_ms”和“delay_us”,这些函数需要根据实际情况进行定义。同时,还需注意超声波传感器的工作电压和合适的发射脉冲宽度,以及引脚的对应关系和配置等。
希望以上回答对您有所帮助,如有其他问题,欢迎继续咨询。
### 回答2:
stm32f103c8t6是一款32位微控制器,常用于嵌入式系统开发。超声波测距是一种基于声波的测量方法,常用于距离测量等应用场景。以下是基于stm32f103c8t6的超声波测距源码及接线的解释。
首先,连接硬件部分。根据超声波传感器的引脚定义,将其连接到stm32f103c8t6开发板上。通常,超声波传感器有四个引脚:Vcc(供电)、GND(地)、Trig(触发)、Echo(回响)。将超声波传感器的Vcc引脚连接到3.3V电源,将GND引脚连接到GND,将Trig引脚连接到开发板的一个GPIO引脚,将Echo引脚连接到另一个GPIO引脚。
然后,编写源码。使用stm32固件库或CubeMX等工具创建一个新的stm32项目。在源码中,首先需要初始化GPIO引脚,将Trig引脚设置为输出模式,将Echo引脚设置为输入模式。然后,通过GPIO操作向Trig引脚发送一个短脉冲信号,触发超声波传感器发送声波。接着,通过计时器或延时函数等方法测量Echo引脚的高电平持续时间,以此计算出回响时间。
最后,通过一定的公式和算法,将回响时间转换为距离值。通常,回响时间与距离呈线性关系,通过一些实验数据可以校准转换系数。最终,将距离值显示在液晶屏或通过串口输出等方式。
需要注意的是,在将Trig引脚设置为高电平触发超声波传感器之前,需要保证Trig引脚为低电平状态一段时间,以确保传感器处于稳定状态。
综上所述,基于stm32f103c8t6的超声波测距源码及接线主要涉及硬件的连接和源码的编写。通过初始化GPIO引脚、发送触发脉冲、测量回响时间、转换距离值等步骤,可以实现超声波测距功能。
### 回答3:
基于STM32F103C8T6的超声波测距源码及接线(已调)如下:
首先,我们需要将超声波传感器与STM32F103C8T6微控制器进行正确的接线。以下是接线步骤:
1. 将超声波传感器的Trig引脚连接到STM32F103C8T6微控制器的任意一个GPIO引脚,例如GPIOA的第9号引脚。
2. 将超声波传感器的Echo引脚连接到STM32F103C8T6微控制器的任意一个GPIO引脚,例如GPIOA的第10号引脚。
3. 将超声波传感器的Vcc引脚连接到STM32F103C8T6微控制器的3.3V电源。
4. 将超声波传感器的GND引脚连接到STM32F103C8T6微控制器的地线。
接下来,我们给出一个基于STM32F103C8T6的超声波测距源码的例程供参考:
```c
#include "stm32f10x.h"
#include "delay.h"
#define Trig_Pin GPIO_Pin_9
#define Echo_Pin GPIO_Pin_10
#define Trig_Port GPIOA
#define Echo_Port GPIOA
// 配置超声波引脚
void Ultrasonic_Init()
{
GPIO_InitTypeDef GPIO_InitStruct;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
GPIO_InitStruct.GPIO_Pin = Trig_Pin;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(Trig_Port, &GPIO_InitStruct);
GPIO_InitStruct.GPIO_Pin = Echo_Pin;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(Echo_Port, &GPIO_InitStruct);
}
// 发送超声波测距信号
float Ultrasonic_Detect()
{
uint32_t timing;
float distance;
GPIO_SetBits(Trig_Port, Trig_Pin);
delay_us(10);
GPIO_ResetBits(Trig_Port, Trig_Pin);
while (GPIO_ReadInputDataBit(Echo_Port, Echo_Pin) == 0);
TIM_Cmd(TIM2, ENABLE);
TIM_SetCounter(TIM2, 0);
while (GPIO_ReadInputDataBit(Echo_Port, Echo_Pin) == 1);
timing = TIM_GetCounter(TIM2);
distance = (float)timing * 0.0343 / 2;
TIM_Cmd(TIM2, DISABLE);
return distance;
}
int main()
{
Ultrasonic_Init();
while (1)
{
float distance = Ultrasonic_Detect();
// 将测距结果进行处理和应用
delay_ms(100);
}
}
```
这段代码首先定义了超声波传感器的引脚和端口,然后在初始化中配置了引脚的输入输出模式。
在主函数中,我们使用`Ultrasonic_Init()`函数初始化超声波传感器,并在主循环中调用`Ultrasonic_Detect()`函数进行测距。测距结果可以在后续进行处理和应用。
需要注意的是,以上代码仅提供一个基本的示例,具体的电路和应用需根据实际情况进行调整和修改。同时,因为涉及到定时器的使用,需要在项目中配置和初始化相应的定时器。这里以TIM2为例,具体的配置可根据需要进行调整。
希望以上回答对您有所帮助!
stm32f103c8t6与lcd1602连接
STM32F103C8T6是一款基于Cortex-M3内核的微控制器,常用于嵌入式系统开发,而LCD1602是一种常见的16x2点阵液晶显示器,它有两行显示字符的功能。
要将STM32F103C8T6与LCD1602连接,你需要完成以下几个步骤:
1. **硬件连接**:
- 将STM32的PA8引脚(TX)连接到LCD1602的数据线(D4);
- 将STM32的PA9引脚(RX)连接到LCD1602的命令线(RS);
- 如果你的LCD1602需要片选(CS),则连接一个IO口到LCD的片选信号;
- 接地或接VCC(电源)到LCD的VSS和VDD引脚;
- 连接背光(BL)和R/W(读写)线(如果有)。
2. **配置GPIO**:
- 在STM32上,你需要配置PA8和PA9作为推挽输出,用于数据和命令的传输;
- 可能还需要设置中断使能,以便及时响应LCD的命令响应。
3. **驱动初始化**:
- 编程时,首先要加载LCD的初始化命令序列,包括同步、功能选择等;
- 配置串口通信,通常使用HAL库提供的串口发送函数来控制液晶屏。
4. **数据传输**:
- 使用串口模式(如半双工或全双工),向LCD1602发送ASCII字符或图形指令。
5. **编写控制程序**:
- 设计主循环,不断从用户输入获取数据,然后通过串口发送到LCD1602显示。
阅读全文