通过stm32f103c8t6stlinkv2右侧连接数据线连接电脑是什么样的连接

时间: 2023-08-08 07:13:57 浏览: 138
使用STM32F103C8T6开发板配合ST-Link/V2调试器连接到电脑的步骤如下: 1. 将STM32F103C8T6开发板与ST-Link/V2调试器通过JTAG/SWD接口连接起来。开发板上通常有一个标有"SWDIO"和"SWCLK"的10针排针接口。将ST-Link/V2调试器的对应引脚连接到开发板上。 2. 将ST-Link/V2调试器的USB接口连接到电脑上。 3. 确保你已经安装了ST-Link/V2驱动程序。你可以从STMicroelectronics官方网站上下载并安装ST-Link/V2驱动程序。 4. 打开开发环境(如Keil、IAR等),选择正确的目标设备(STM32F103C8T6)和调试器(ST-Link/V2)。 5. 在开发环境中选择下载或调试程序的选项,连接到目标设备。 这样,STM32F103C8T6开发板就可以通过ST-Link/V2调试器与电脑进行连接。你可以使用开发环境进行编程、烧录和调试。请注意,具体的连接方式可能会因不同的开发板和调试器而有所不同,因此请参考相关文档和资料以确保正确连接。
相关问题

基于stm32f103c8t6超声波测距源码及接线(已调)_stm32f103c8t6例程_stm32_超声波_s

### 回答1: stm32f103c8t6是一款常用的单片机开发板,可以用来实现超声波测距功能。超声波测距是利用超声波的传播速度来测量距离的一种技术。 首先,我们需要连接超声波传感器和stm32f103c8t6开发板。超声波传感器一般有两个引脚:Trig和Echo。Trig用于发送超声波信号,Echo用于接收超声波信号。 接线时,将Trig引脚连接到stm32f103c8t6开发板上的一个GPIO引脚,例如PA0。将Echo引脚连接到stm32f103c8t6开发板上的另一个GPIO引脚,例如PA1。 接线完成后,我们可以开始编写源码来实现超声波测距功能。以下是一个简单的示例代码: #include "stm32f10x.h" // 定义Trig引脚所在的GPIO端口和引脚号 #define TRIG_GPIO GPIOA #define TRIG_PIN GPIO_Pin_0 // 定义Echo引脚所在的GPIO端口和引脚号 #define ECHO_GPIO GPIOA #define ECHO_PIN GPIO_Pin_1 // 声明超声波测距函数 float measureDistance(); int main(void) { // 初始化GPIO GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); GPIO_InitStructure.GPIO_Pin = TRIG_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(TRIG_GPIO, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = ECHO_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(ECHO_GPIO, &GPIO_InitStructure); while(1) { float distance = measureDistance(); // 在这里处理测量到的距离数据 delay_ms(500); // 延时500毫秒 } } // 超声波测距函数 float measureDistance() { // 发送一个10us的高电平脉冲 GPIO_SetBits(TRIG_GPIO, TRIG_PIN); delay_us(10); GPIO_ResetBits(TRIG_GPIO, TRIG_PIN); // 等待Echo引脚变为高电平 while (GPIO_ReadInputDataBit(ECHO_GPIO, ECHO_PIN) == 0); // 开始计时 uint32_t start_time = TIM3->CNT; // 等待Echo引脚变为低电平 while(GPIO_ReadInputDataBit(ECHO_GPIO, ECHO_PIN) == 1); // 结束计时 uint32_t end_time = TIM3->CNT; // 计算超声波传播时间 uint32_t duration = end_time - start_time; // 计算距离 float distance = duration * 0.034 / 2; return distance; } 上述代码中,我们首先通过“RCC_APB2PeriphClockCmd”函数使能GPIOA的时钟。然后分别对Trig和Echo引脚进行初始化,将Trig引脚设置为输出模式,将Echo引脚设置为输入上拉模式。 在主函数中,我们使用一个无限循环实现连续测量。调用“measureDistance”函数测量距离,并将距离数据保存在变量“distance”中。我们可以在需要的地方处理测量到的距离数据。 在“measureDistance”函数中,我们首先发送一个10us的高电平脉冲,并使用延时函数等待Echo引脚变为高电平。然后开始计时,继续等待Echo引脚变为低电平,结束计时。通过计算传播时间,可以计算出距离,并将结果返回。 需要注意的是,示例代码中使用了延时函数“delay_ms”和“delay_us”,这些函数需要根据实际情况进行定义。同时,还需注意超声波传感器的工作电压和合适的发射脉冲宽度,以及引脚的对应关系和配置等。 希望以上回答对您有所帮助,如有其他问题,欢迎继续咨询。 ### 回答2: stm32f103c8t6是一款32位微控制器,常用于嵌入式系统开发。超声波测距是一种基于声波的测量方法,常用于距离测量等应用场景。以下是基于stm32f103c8t6的超声波测距源码及接线的解释。 首先,连接硬件部分。根据超声波传感器的引脚定义,将其连接到stm32f103c8t6开发板上。通常,超声波传感器有四个引脚:Vcc(供电)、GND(地)、Trig(触发)、Echo(回响)。将超声波传感器的Vcc引脚连接到3.3V电源,将GND引脚连接到GND,将Trig引脚连接到开发板的一个GPIO引脚,将Echo引脚连接到另一个GPIO引脚。 然后,编写源码。使用stm32固件库或CubeMX等工具创建一个新的stm32项目。在源码中,首先需要初始化GPIO引脚,将Trig引脚设置为输出模式,将Echo引脚设置为输入模式。然后,通过GPIO操作向Trig引脚发送一个短脉冲信号,触发超声波传感器发送声波。接着,通过计时器或延时函数等方法测量Echo引脚的高电平持续时间,以此计算出回响时间。 最后,通过一定的公式和算法,将回响时间转换为距离值。通常,回响时间与距离呈线性关系,通过一些实验数据可以校准转换系数。最终,将距离值显示在液晶屏或通过串口输出等方式。 需要注意的是,在将Trig引脚设置为高电平触发超声波传感器之前,需要保证Trig引脚为低电平状态一段时间,以确保传感器处于稳定状态。 综上所述,基于stm32f103c8t6的超声波测距源码及接线主要涉及硬件的连接和源码的编写。通过初始化GPIO引脚、发送触发脉冲、测量回响时间、转换距离值等步骤,可以实现超声波测距功能。 ### 回答3: 基于STM32F103C8T6的超声波测距源码及接线(已调)如下: 首先,我们需要将超声波传感器与STM32F103C8T6微控制器进行正确的接线。以下是接线步骤: 1. 将超声波传感器的Trig引脚连接到STM32F103C8T6微控制器的任意一个GPIO引脚,例如GPIOA的第9号引脚。 2. 将超声波传感器的Echo引脚连接到STM32F103C8T6微控制器的任意一个GPIO引脚,例如GPIOA的第10号引脚。 3. 将超声波传感器的Vcc引脚连接到STM32F103C8T6微控制器的3.3V电源。 4. 将超声波传感器的GND引脚连接到STM32F103C8T6微控制器的地线。 接下来,我们给出一个基于STM32F103C8T6的超声波测距源码的例程供参考: ```c #include "stm32f10x.h" #include "delay.h" #define Trig_Pin GPIO_Pin_9 #define Echo_Pin GPIO_Pin_10 #define Trig_Port GPIOA #define Echo_Port GPIOA // 配置超声波引脚 void Ultrasonic_Init() { GPIO_InitTypeDef GPIO_InitStruct; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); GPIO_InitStruct.GPIO_Pin = Trig_Pin; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(Trig_Port, &GPIO_InitStruct); GPIO_InitStruct.GPIO_Pin = Echo_Pin; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(Echo_Port, &GPIO_InitStruct); } // 发送超声波测距信号 float Ultrasonic_Detect() { uint32_t timing; float distance; GPIO_SetBits(Trig_Port, Trig_Pin); delay_us(10); GPIO_ResetBits(Trig_Port, Trig_Pin); while (GPIO_ReadInputDataBit(Echo_Port, Echo_Pin) == 0); TIM_Cmd(TIM2, ENABLE); TIM_SetCounter(TIM2, 0); while (GPIO_ReadInputDataBit(Echo_Port, Echo_Pin) == 1); timing = TIM_GetCounter(TIM2); distance = (float)timing * 0.0343 / 2; TIM_Cmd(TIM2, DISABLE); return distance; } int main() { Ultrasonic_Init(); while (1) { float distance = Ultrasonic_Detect(); // 将测距结果进行处理和应用 delay_ms(100); } } ``` 这段代码首先定义了超声波传感器的引脚和端口,然后在初始化中配置了引脚的输入输出模式。 在主函数中,我们使用`Ultrasonic_Init()`函数初始化超声波传感器,并在主循环中调用`Ultrasonic_Detect()`函数进行测距。测距结果可以在后续进行处理和应用。 需要注意的是,以上代码仅提供一个基本的示例,具体的电路和应用需根据实际情况进行调整和修改。同时,因为涉及到定时器的使用,需要在项目中配置和初始化相应的定时器。这里以TIM2为例,具体的配置可根据需要进行调整。 希望以上回答对您有所帮助!

stm32f103c8t6与lcd1602连接

STM32F103C8T6是一款基于Cortex-M3内核的微控制器,常用于嵌入式系统开发,而LCD1602是一种常见的16x2点阵液晶显示器,它有两行显示字符的功能。 要将STM32F103C8T6与LCD1602连接,你需要完成以下几个步骤: 1. **硬件连接**: - 将STM32的PA8引脚(TX)连接到LCD1602的数据线(D4); - 将STM32的PA9引脚(RX)连接到LCD1602的命令线(RS); - 如果你的LCD1602需要片选(CS),则连接一个IO口到LCD的片选信号; - 接地或接VCC(电源)到LCD的VSS和VDD引脚; - 连接背光(BL)和R/W(读写)线(如果有)。 2. **配置GPIO**: - 在STM32上,你需要配置PA8和PA9作为推挽输出,用于数据和命令的传输; - 可能还需要设置中断使能,以便及时响应LCD的命令响应。 3. **驱动初始化**: - 编程时,首先要加载LCD的初始化命令序列,包括同步、功能选择等; - 配置串口通信,通常使用HAL库提供的串口发送函数来控制液晶屏。 4. **数据传输**: - 使用串口模式(如半双工或全双工),向LCD1602发送ASCII字符或图形指令。 5. **编写控制程序**: - 设计主循环,不断从用户输入获取数据,然后通过串口发送到LCD1602显示。
阅读全文

相关推荐

最新推荐

recommend-type

MAX30102心率血氧传感器在STM32F103C8T6上的应用

在STM32F103C8T6中,GPIOB的第10和第11引脚被用作I2C的数据线SDA和时钟线SCL。可以看到,无论是标准库还是HAL库,它们都涉及到初始化GPIO的步骤,包括使能GPIOB时钟、设置GPIO速度、模式以及打开开漏输出。这确保了...
recommend-type

只需要用一张图片素材文档选择器.zip

只需要用一张图片素材文档选择器.zip
recommend-type

火炬连体网络在MNIST的2D嵌入实现示例

资源摘要信息:"Siamese网络是一种特殊的神经网络,主要用于度量学习任务中,例如人脸验证、签名识别或任何需要判断两个输入是否相似的场景。本资源中的实现例子是在MNIST数据集上训练的,MNIST是一个包含了手写数字的大型数据集,广泛用于训练各种图像处理系统。在这个例子中,Siamese网络被用来将手写数字图像嵌入到2D空间中,同时保留它们之间的相似性信息。通过这个过程,数字图像能够被映射到一个欧几里得空间,其中相似的图像在空间上彼此接近,不相似的图像则相对远离。 具体到技术层面,Siamese网络由两个相同的子网络构成,这两个子网络共享权重并且并行处理两个不同的输入。在本例中,这两个子网络可能被设计为卷积神经网络(CNN),因为CNN在图像识别任务中表现出色。网络的输入是成对的手写数字图像,输出是一个相似性分数或者距离度量,表明这两个图像是否属于同一类别。 为了训练Siamese网络,需要定义一个损失函数来指导网络学习如何区分相似与不相似的输入对。常见的损失函数包括对比损失(Contrastive Loss)和三元组损失(Triplet Loss)。对比损失函数关注于同一类别的图像对(正样本对)以及不同类别的图像对(负样本对),鼓励网络减小正样本对的距离同时增加负样本对的距离。 在Lua语言环境中,Siamese网络的实现可以通过Lua的深度学习库,如Torch/LuaTorch,来构建。Torch/LuaTorch是一个强大的科学计算框架,它支持GPU加速,广泛应用于机器学习和深度学习领域。通过这个框架,开发者可以使用Lua语言定义模型结构、配置训练过程、执行前向和反向传播算法等。 资源的文件名称列表中的“siamese_network-master”暗示了一个主分支,它可能包含模型定义、训练脚本、测试脚本等。这个主分支中的代码结构可能包括以下部分: 1. 数据加载器(data_loader): 负责加载MNIST数据集并将图像对输入到网络中。 2. 模型定义(model.lua): 定义Siamese网络的结构,包括两个并行的子网络以及最后的相似性度量层。 3. 训练脚本(train.lua): 包含模型训练的过程,如前向传播、损失计算、反向传播和参数更新。 4. 测试脚本(test.lua): 用于评估训练好的模型在验证集或者测试集上的性能。 5. 配置文件(config.lua): 包含了网络结构和训练过程的超参数设置,如学习率、批量大小等。 Siamese网络在实际应用中可以广泛用于各种需要比较两个输入相似性的场合,例如医学图像分析、安全验证系统等。通过本资源中的示例,开发者可以深入理解Siamese网络的工作原理,并在自己的项目中实现类似的网络结构来解决实际问题。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧

![L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. L2正则化基础概念 在机器学习和统计建模中,L2正则化是一个广泛应用的技巧,用于改进模型的泛化能力。正则化是解决过拟
recommend-type

如何构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,并确保业务连续性规划的有效性?

构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,需要遵循一系列步骤来确保信息系统的安全性和业务连续性规划的有效性。首先,组织需要明确信息安全事件的定义,理解信息安全事态和信息安全事件的区别,并建立事件分类和分级机制。 参考资源链接:[信息安全事件管理:策略与响应指南](https://wenku.csdn.net/doc/5f6b2umknn?spm=1055.2569.3001.10343) 依照GB/T19716标准,组织应制定信息安全事件管理策略,明确组织内各个层级的角色与职责。此外,需要设置信息安全事件响应组(ISIRT),并为其配备必要的资源、
recommend-type

Angular插件增强Application Insights JavaScript SDK功能

资源摘要信息:"Microsoft Application Insights JavaScript SDK-Angular插件" 知识点详细说明: 1. 插件用途与功能: Microsoft Application Insights JavaScript SDK-Angular插件主要用途在于增强Application Insights的Javascript SDK在Angular应用程序中的功能性。通过使用该插件,开发者可以轻松地在Angular项目中实现对特定事件的监控和数据收集,其中包括: - 跟踪路由器更改:插件能够检测和报告Angular路由的变化事件,有助于开发者理解用户如何与应用程序的导航功能互动。 - 跟踪未捕获的异常:该插件可以捕获并记录所有在Angular应用中未被捕获的异常,从而帮助开发团队快速定位和解决生产环境中的问题。 2. 兼容性问题: 在使用Angular插件时,必须注意其与es3不兼容的限制。es3(ECMAScript 3)是一种较旧的JavaScript标准,已广泛被es5及更新的标准所替代。因此,当开发Angular应用时,需要确保项目使用的是兼容现代JavaScript标准的构建配置。 3. 安装与入门: 要开始使用Application Insights Angular插件,开发者需要遵循几个简单的步骤: - 首先,通过npm(Node.js的包管理器)安装Application Insights Angular插件包。具体命令为:npm install @microsoft/applicationinsights-angularplugin-js。 - 接下来,开发者需要在Angular应用的适当组件或服务中设置Application Insights实例。这一过程涉及到了导入相关的类和方法,并根据Application Insights的官方文档进行配置。 4. 基本用法示例: 文档中提到的“基本用法”部分给出的示例代码展示了如何在Angular应用中设置Application Insights实例。示例中首先通过import语句引入了Angular框架的Component装饰器以及Application Insights的类。然后,通过Component装饰器定义了一个Angular组件,这个组件是应用的一个基本单元,负责处理视图和用户交互。在组件类中,开发者可以设置Application Insights的实例,并将插件添加到实例中,从而启用特定的功能。 5. TypeScript标签的含义: TypeScript是JavaScript的一个超集,它添加了类型系统和一些其他特性,以帮助开发更大型的JavaScript应用。使用TypeScript可以提高代码的可读性和可维护性,并且可以利用TypeScript提供的强类型特性来在编译阶段就发现潜在的错误。文档中提到的标签"TypeScript"强调了该插件及其示例代码是用TypeScript编写的,因此在实际应用中也需要以TypeScript来开发和维护。 6. 压缩包子文件的文件名称列表: 在实际的项目部署中,可能会用到压缩包子文件(通常是一些JavaScript库的压缩和打包后的文件)。在本例中,"applicationinsights-angularplugin-js-main"很可能是该插件主要的入口文件或者压缩包文件的名称。在开发过程中,开发者需要确保引用了正确的文件,以便将插件的功能正确地集成到项目中。 总结而言,Application Insights Angular插件是为了加强在Angular应用中使用Application Insights Javascript SDK的能力,帮助开发者更好地监控和分析应用的运行情况。通过使用该插件,可以跟踪路由器更改和未捕获异常等关键信息。安装与配置过程简单明了,但是需要注意兼容性问题以及正确引用文件,以确保插件能够顺利工作。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

L1正则化模型诊断指南:如何检查模型假设与识别异常值(诊断流程+案例研究)

![L1正则化模型诊断指南:如何检查模型假设与识别异常值(诊断流程+案例研究)](https://www.dmitrymakarov.ru/wp-content/uploads/2022/10/lr_lev_inf-1024x578.jpg) # 1. L1正则化模型概述 L1正则化,也被称为Lasso回归,是一种用于模型特征选择和复杂度控制的方法。它通过在损失函数中加入与模型权重相关的L1惩罚项来实现。L1正则化的作用机制是引导某些模型参数缩小至零,使得模型在学习过程中具有自动特征选择的功能,因此能够产生更加稀疏的模型。本章将从L1正则化的基础概念出发,逐步深入到其在机器学习中的应用和优势
recommend-type

如何构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,并确保业务连续性规划的有效性?

为了帮助你构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,同时确保业务连续性规划的有效性,你需要从以下几个方面入手:(详细步骤、代码、mermaid流程图、扩展内容,此处略) 参考资源链接:[信息安全事件管理:策略与响应指南](https://wenku.csdn.net/doc/5f6b2umknn?spm=1055.2569.3001.10343) 在构建框架时,首先应明确信息安全事件和信息安全事态的定义,理解它们之间如何相互关联。GB/T19716-2005和GB/Z20986-2007标准为你提供了基础框架和分类分级指南,帮助你