编写matlab代码,利用直方图确定阈值,对受噪声污染的指纹图片Fig0734.png进行分割,展示原图、直方图、分割后的图片(0、1二值图)。

时间: 2023-07-10 09:11:24 浏览: 203
好的,下面是matlab代码实现: ```matlab % 加载图片 img = imread('Fig0734.png'); % 显示原图 subplot(1,3,1); imshow(img); title('原图'); % 绘制直方图 subplot(1,3,2); imhist(img); title('直方图'); % 利用直方图确定阈值 level = graythresh(img); % 对图像进行二值化处理 bw = imbinarize(img, level); % 显示二值化后的图像 subplot(1,3,3); imshow(bw); title('分割后的图片'); ``` 运行代码后,会弹出一个窗口,分别展示原图、直方图和分割后的二值图像。其中,利用 `graythresh` 函数可以自动计算出合适的阈值,将图像二值化,得到分割后的二值图像。
相关问题

编写matlab代码,利用迭代的方法获取最优阈值,然后对受噪声污染的指纹图片Fig0734.png进行分割。具体的步骤如下:(1)设定参数t0,并选择一个初始的估计阈值t1;(2)用阈值t1分割图像,将图像分成两部分,G1是由灰度值大于t1的像素组成,G2是由灰度值小于或等于t1的像素组成;(3)计算G1和G2中所有的像素的平均灰度值M1和M2,以及新的阈值t2=(M1+M2)/2;(4)如果|t2-t1|<t0,则推出:t2即为最优阈值,否则,将t2赋值给t1并重复步骤(2)--(4),直到获取最优阈值为止。(5)利用得到的最优阈值进行分割,得到最终的分割结果。(6)展示原图、分割后的图片(0、1二值图)、和所得到的最优阈值。

以下是实现该算法的 MATLAB 代码: ``` % 读取图像 I = imread('Fig0734.png'); % 设定参数 t0 = 1; t1 = 128; % 迭代获取最优阈值 while true % 分割图像 G1 = I > t1; G2 = I <= t1; % 计算平均灰度值 M1 = mean(I(G1)); M2 = mean(I(G2)); t2 = (M1 + M2) / 2; % 判断是否满足停止迭代的条件 if abs(t2 - t1) < t0 break; end % 更新阈值 t1 = t2; end % 得到最优阈值 t_opt = t2; % 使用最优阈值进行分割 BW = I > t_opt; % 显示结果 figure; subplot(1,3,1); imshow(I); title('原图'); subplot(1,3,2); imshow(BW); title('分割结果'); subplot(1,3,3); imshow(double(BW)); title(['最优阈值:' num2str(t_opt)]); ``` 执行完上述代码后,会得到三张图像,分别为原图、分割结果和最优阈值。其中,分割结果是一个二值图像,白色像素表示指纹区域,黑色像素表示非指纹区域。最优阈值是一个实数,表示分割指纹图像时所使用的最佳阈值。

直方图最大熵阈值法Python代码

### Python 实现直方图最大熵阈值法 为了实现直方图的最大熵阈值法,可以按照以下方法编写代码。该算法旨在找到使背景和前景两部分熵之和最大的最佳阈值。 ```python import numpy as np from skimage import data, filters, exposure import matplotlib.pyplot as plt def calculate_entropy(hist): hist = hist / float(sum(hist)) entropy = -hist * np.log2(hist + 1e-9) return sum(entropy) def max_entropy_threshold(image): hist, bin_edges = np.histogram(image.flatten(), bins=256, range=[0, 256]) best_thresh = 0 max_ent = 0 for t in range(1, len(bin_edges)-1): back_hist = hist[:t] fore_hist = hist[t:] back_ent = calculate_entropy(back_hist) fore_ent = calculate_entropy(fore_hist) total_ent = back_ent + fore_ent if total_ent > max_ent: max_ent = total_ent best_thresh = t return best_thresh image = data.camera() gray_image = image # Assuming the input is already a grayscale image thresh = max_entropy_threshold(gray_image) binary = gray_image > thresh fig, axes = plt.subplots(ncols=3, figsize=(15, 5)) ax = axes.ravel() ax[0].imshow(gray_image, cmap=plt.cm.gray) ax[0].set_title('Original Image') ax[1].hist(gray_image.ravel(), bins=256) ax[1].set_title('Histogram') ax[1].axvline(thresh, color='r', linestyle='dashed', linewidth=2) ax[2].imshow(binary, cmap=plt.cm.gray) ax[2].set_title('Thresholded Image') plt.tight_layout() plt.show() ``` 此段代码实现了基于直方图的最大熵阈值分割方法[^2]。通过计算不同阈值下的总熵并选取最优者来完成图像的二值化处理过程。
阅读全文

相关推荐

大家在看

recommend-type

【答题卡识别】 Hough变换答题卡识别【含Matlab源码 250期】.zip

Matlab领域上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像识别:表盘识别、车道线识别、车牌识别、答题卡识别、电器识别、跌倒检测、动物识别、发票识别、服装识别、汉字识别、红绿灯识别、火灾检测、疾病分类、交通标志牌识别、口罩识别、裂缝识别、目标跟踪、疲劳检测、身份证识别、人民币识别、数字字母识别、手势识别、树叶识别、水果分级、条形码识别、瑕疵检测、芯片识别、指纹识别
recommend-type

Solar-Wind-Hybrid-Power-plant_matlab_

hybrid solar wind farm using matlab
recommend-type

OZ9350 设计规格书

OZ9350 设计规格书
recommend-type

看nova-scheduler如何选择计算节点-每天5分钟玩转OpenStack

本节重点介绍nova-scheduler的调度机制和实现方法:即解决如何选择在哪个计算节点上启动instance的问题。创建Instance时,用户会提出资源需求,例如CPU、内存、磁盘各需要多少。OpenStack将这些需求定义在flavor中,用户只需要指定用哪个flavor就可以了。可用的flavor在System->Flavors中管理。Flavor主要定义了VCPU,RAM,DISK和Metadata这四类。nova-scheduler会按照flavor去选择合适的计算节点。VCPU,RAM,DISK比较好理解,而Metatdata比较有意思,我们后面会具体讨论。下面介绍nova-s
recommend-type

机器视觉选型计算概述-不错的总结

机器视觉选型计算概述-不错的总结

最新推荐

recommend-type

利用matplotlib为图片上添加触发事件进行交互

本文将详细讲解如何利用matplotlib为图片添加触发事件,实现交互功能。 首先,问题起源于尝试使用OpenCV进行图像的交互处理,但在尝试添加鼠标事件时遇到了错误。错误提示表明OpenCV库在当前环境中缺少必要的支持,...
recommend-type

Matplotlib绘制雷达图和三维图的示例代码

本篇文章将深入探讨如何使用 Matplotlib 来绘制雷达图和三维图,通过具体的示例代码帮助读者理解并掌握这两种图形的创建方法。 ### 1. 雷达图(Polar Plot) 雷达图是一种多变量数据的可视化工具,通常用于展示多...
recommend-type

PYTHON绘制雷达图代码实例

雷达图也被称为蜘蛛图或星形图,它将数据沿着多个轴(通常为角度)展示,形成一个闭合的多边形,使得观察者可以直观地看到每个类别的综合表现。以下是一个使用Python的matplotlib库绘制雷达图的详细步骤: 首先,...
recommend-type

Python实现读取txt文件并画三维图简单代码示例

本示例将详细介绍如何使用Python读取`.txt`文件并将其中的数据转换为三维散点图和三维线图。 首先,我们需要导入必要的库。在本例中,使用了`numpy`库进行数值计算,`matplotlib.pyplot`库用于绘制二维图形,以及`...
recommend-type

python3利用Axes3D库画3D模型图

本篇文章将介绍如何利用`mpl_toolkits.mplot3d`中的`Axes3D`库来创建3D模型图,以展示两个特征的线性回归。 首先,我们要导入所需的库。`numpy`库用于处理数组操作,`scipy`库提供统计功能,`matplotlib.pyplot`...
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。