介绍以下模型结构 model = Sequential() model.add(TimeDistributed(Conv1D(filters=64, kernel_size=1, activation='relu'), input_shape=(None,n_steps, n_features))) model.add(TimeDistributed(MaxPooling1D(pool_size=2))) model.add(TimeDistributed(Flatten())) model.add(LSTM(50, activation='relu')) model.add(Dense(1)) model.compile(optimizer='adam', loss='mse')
时间: 2023-02-12 11:57:30 浏览: 153
这是一个使用 Keras 框架构建的序贯模型。它由多个层组成。
第一层是 TimeDistributed 层,它包含了一个卷积层(Conv1D)。这个层的作用是对输入数据的每一个时间步进行卷积操作,其中的参数包括卷积核的数量(filters=64),卷积核的大小(kernel_size=1)和激活函数(activation=relu)。
紧接着是一个 TimeDistributed 层,它包含了最大池化层(MaxPooling1D)。这个层的作用是对卷积后的数据进行最大池化操作,其中的参数包括池化的大小(pool_size=2)
接着是一个 TimeDistributed 层,它包含了扁平层(Flatten)。这个层的作用是将数据展平
接着是一个 LSTM 层,其中的参数包括隐藏单元的数量(50)和激活函数(activation=relu)。
最后是一个 Dense 层,这个层的作用是输出预测结果。
最后是编译模型,使用Adam优化器,损失函数为mse。
相关问题
def CNN_LSTM_model(input_size): model = Sequential() model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(input_size, 1))) model.add(Conv1D(filters=64, kernel_size=3, activation='relu')) model.add(MaxPooling1D(pool_size=2)) model.add(Dropout(0.5)) model.add(Conv1D(filters=128, kernel_size=3, activation='relu')) model.add(Conv1D(filters=128, kernel_size=3, activation='relu')) model.add(MaxPooling1D(pool_size=2)) model.add(Dropout(0.5)) model.add(Conv1D(filters=256, kernel_size=3, activation='relu')) model.add(Conv1D(filters=256, kernel_size=3, activation='relu')) model.add(MaxPooling1D(pool_size=2)) model.add(Dropout(0.5)) model.add(LSTM(64, return_sequences=True)) model.add(LSTM(32)) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='sigmoid')) return model改写成更适合5g异常流量数据分析的代码
可以考虑以下改进:
1. 修改模型输入形状,将原来的 `(input_size, 1)` 修改为 `(input_size, 3)`,表示每个时间步的输入特征包括当前时间步、前一时间步和后一时间步的流量数据。
2. 将最后一层的 `sigmoid` 激活函数改为 `softmax`,以便输出对不同类型异常流量的分类结果。
3. 修改模型输出层的神经元数量为 5,对应于可能的异常流量类型数目。
4. 修改损失函数为 `categorical_crossentropy`,适合多分类问题。
修改后的代码如下所示:
```
def CNN_LSTM_model(input_size):
model = Sequential()
model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(input_size, 3)))
model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.5))
model.add(Conv1D(filters=128, kernel_size=3, activation='relu'))
model.add(Conv1D(filters=128, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.5))
model.add(Conv1D(filters=256, kernel_size=3, activation='relu'))
model.add(Conv1D(filters=256, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.5))
model.add(LSTM(64, return_sequences=True))
model.add(LSTM(32))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
```
帮我用pytorch改写:def make_generator_model(): model = tf.keras.Sequential() model.add(layers.Input(shape=(100, 12))) model.add(layers.Bidirectional(layers.LSTM(64, return_sequences=True))) model.add(layers.Conv1D(filters=128, kernel_size=16, strides=1, padding='same')) model.add(layers.LeakyReLU()) model.add(layers.Conv1D(filters=64, kernel_size=16, strides=1, padding='same')) model.add(layers.LeakyReLU()) model.add(layers.UpSampling1D(2)) model.add(layers.Conv1D(filters=32, kernel_size=16, strides=1, padding='same')) model.add(layers.LeakyReLU()) model.add(layers.Conv1D(filters=16, kernel_size=16, strides=1, padding='same')) model.add(layers.LeakyReLU()) model.add(layers.UpSampling1D(2)) model.add(layers.Conv1D(filters=1, kernel_size=16, strides=1, padding='same', activation='tanh')) model.add(layers.Permute((2, 1))) return model def make_discriminator_model(): model = tf.keras.Sequential() model.add(layers.Input(shape=(1, 400))) model.add(layers.Permute((2, 1))) model.add(layers.Conv1D(filters=32, kernel_size=16, strides=1, padding='same')) model.add(layers.LeakyReLU()) # model.add(layers.Dropout(0.4)) model.add(layers.Conv1D(filters=64, kernel_size=16, strides=1, padding='same')) model.add(layers.LeakyReLU()) model.add(layers.MaxPool1D(pool_size=2)) model.add(layers.Conv1D(filters=128, kernel_size=16, strides=1, padding='same')) model.add(layers.LeakyReLU()) # model.add(layers.Dropout(0.4)) model.add(layers.Conv1D(filters=256, kernel_size=16, strides=1, padding='same')) model.add(layers.LeakyReLU()) model.add(layers.MaxPool1D(pool_size=2)) model.add(layers.Flatten()) model.add(layers.Dense(1)) return model
以下是使用PyTorch重写的make_generator_model和make_discriminator_model函数:
```python
import torch.nn as nn
def make_generator_model():
model = nn.Sequential(
nn.LSTM(12, 64, bidirectional=True, batch_first=True),
nn.Conv1d(128, 128, kernel_size=16, stride=1, padding=8),
nn.LeakyReLU(),
nn.Conv1d(64, 64, kernel_size=16, stride=1, padding=8),
nn.LeakyReLU(),
nn.Upsample(scale_factor=2),
nn.Conv1d(32, 32, kernel_size=16, stride=1, padding=8),
nn.LeakyReLU(),
nn.Conv1d(16, 16, kernel_size=16, stride=1, padding=8),
nn.LeakyReLU(),
nn.Upsample(scale_factor=2),
nn.Conv1d(1, 1, kernel_size=16, stride=1, padding=8),
nn.Tanh(),
nn.Permute((0, 2, 1))
)
return model
def make_discriminator_model():
model = nn.Sequential(
nn.Conv1d(400, 32, kernel_size=16, stride=1, padding=8),
nn.LeakyReLU(),
nn.Conv1d(32, 64, kernel_size=16, stride=1, padding=8),
nn.LeakyReLU(),
nn.MaxPool1d(kernel_size=2),
nn.Conv1d(64, 128, kernel_size=16, stride=1, padding=8),
nn.LeakyReLU(),
nn.Conv1d(128, 256, kernel_size=16, stride=1, padding=8),
nn.LeakyReLU(),
nn.MaxPool1d(kernel_size=2),
nn.Flatten(),
nn.Linear(256 * 25, 1)
)
return model
```
请注意,这里使用了PyTorch中的模块替换了TensorFlow中的模块。在PyTorch中,nn.LSTM和nn.Conv1d的默认输入格式是(batch_size, seq_len, input_size)和(batch_size, input_channels, seq_len)。另外,使用nn.Linear替换了最后的全连接层。
阅读全文