Can't call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.
时间: 2023-12-12 11:52:12 浏览: 191
This error message is usually encountered when trying to convert a PyTorch tensor to a NumPy array using the `numpy()` method on a tensor that has gradients attached to it.
To resolve this error, you can use the `detach()` method to detach the tensor from the computation graph and then convert it to a NumPy array using the `numpy()` method.
Here's an example:
```python
import torch
x = torch.ones(2, 2, requires_grad=True)
y = x + 2
z = y * y * 3
out = z.mean()
# This will raise the error:
# a = x.numpy()
# This will work:
a = x.detach().numpy()
```
In the above example, we create a tensor `x` with `requires_grad=True`, which means that gradients will be computed for `x` during backpropagation. We then perform some operations on `x` to obtain `out`.
If we try to convert `x` to a NumPy array using the `numpy()` method, we'll get the error message mentioned in the question. Instead, we can use `detach()` to create a new tensor that shares the same data but is detached from the computation graph, and then convert that to a NumPy array using `numpy()`.
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![gz](https://img-home.csdnimg.cn/images/20210720083447.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pptx](https://img-home.csdnimg.cn/images/20241231044947.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)