决策树python代码

时间: 2023-07-09 22:37:56 浏览: 17
以下是一个简单的决策树Python代码示例: ```python from sklearn import tree # 创建一个决策树分类器 clf = tree.DecisionTreeClassifier() # 训练数据 X = [[0, 0], [1, 1]] y = [0, 1] clf.fit(X, y) # 预测数据 print(clf.predict([[2., 2.]])) ``` 这个示例中,我们首先导入了`tree`模块,然后创建了一个决策树分类器`clf`。接着,我们使用训练数据`X`和标签`y`来训练分类器。最后,我们使用`predict()`方法来预测新数据`[[2., 2.]]`的标签,并输出结果。
相关问题

决策树PYTHON代码

以下是一个基本的决策树Python代码: ```python import pandas as pd from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn import metrics # 加载数据 data = pd.read_csv("data.csv") # 定义特征和目标变量 X = data[['feature1', 'feature2', 'feature3', 'feature4']] y = data['target'] # 将数据拆分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) # 创建决策树分类器 clf = DecisionTreeClassifier() # 训练模型 clf = clf.fit(X_train, y_train) # 预测测试集结果 y_pred = clf.predict(X_test) # 评估模型性能 print("准确率:",metrics.accuracy_score(y_test, y_pred)) ``` 上述代码假设数据文件名为“data.csv”,其中包含特征列“feature1”、“feature2”、“feature3”和“feature4”,以及目标列“target”。该代码使用sklearn库中的DecisionTreeClassifier类来创建一个决策树分类器,并使用train_test_split()函数将数据拆分为训练集和测试集。在模型训练后,使用predict()函数对测试集进行预测,并使用accuracy_score()函数计算模型的准确率。

决策树python代码实现

决策树在Python中可以使用scikit-learn库来实现。以下是一个简单的决策树的Python代码示例: ``` # 导入所需的库 from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn import metrics # 加载数据集 iris = datasets.load_iris() X = iris.data y = iris.target # 将数据集拆分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) # 创建决策树分类器 clf = DecisionTreeClassifier() # 在训练集上训练模型 clf.fit(X_train, y_train) # 在测试集上进行预测 y_pred = clf.predict(X_test) # 计算模型的准确率 print("准确率:", metrics.accuracy_score(y_test, y_pred)) ``` 这段代码首先导入了所需的库,包括`datasets`用于加载数据集,`train_test_split`用于将数据集拆分为训练集和测试集,`DecisionTreeClassifier`用于创建决策树分类器,以及`metrics`用于计算模型的准确率。 然后,代码加载了一个经典的鸢尾花数据集作为示例数据。接下来,将数据集拆分为训练集和测试集,其中测试集占总数据集的30%。 然后,创建了一个决策树分类器对象`clf`,并使用训练集对模型进行训练。最后,使用测试集进行预测,并计算模型的准确率。 这只是一个简单的决策树的示例,你可以根据自己的需求对代码进行修改和扩展。

相关推荐

下面是一个简单的 CART 决策树的 Python 实现: python import numpy as np class CARTDecisionTree: def __init__(self, max_depth=10, min_samples_split=2): self.max_depth = max_depth self.min_samples_split = min_samples_split def fit(self, X, y): self.tree = self.build_tree(X, y) def build_tree(self, X, y, depth=0): n_samples, n_features = X.shape n_labels = len(np.unique(y)) # 检查是否应该停止分裂 if (depth >= self.max_depth or n_labels == 1 or n_samples < self.min_samples_split): return np.argmax(np.bincount(y)) # 寻找最佳分割特征和阈值 best_feature, best_threshold = self.get_best_split(X, y, n_samples, n_features) # 分割样本集并递归构建子树 left_indices = X[:, best_feature] < best_threshold right_indices = X[:, best_feature] >= best_threshold left_subtree = self.build_tree(X[left_indices], y[left_indices], depth+1) right_subtree = self.build_tree(X[right_indices], y[right_indices], depth+1) return {'feature': best_feature, 'threshold': best_threshold, 'left': left_subtree, 'right': right_subtree} def get_best_split(self, X, y, n_samples, n_features): best_gini = float('inf') best_feature, best_threshold = None, None # 遍历所有特征和阈值,找到最佳分割 for feature in range(n_features): thresholds = np.unique(X[:, feature]) for threshold in thresholds: left_indices = X[:, feature] < threshold right_indices = X[:, feature] >= threshold if (len(left_indices) == 0 or len(right_indices) == 0): continue gini = self.gini_index(y, left_indices, right_indices) if gini < best_gini: best_gini = gini best_feature = feature best_threshold = threshold return best_feature, best_threshold def gini_index(self, y, left_indices, right_indices): n_left, n_right = len(left_indices), len(right_indices) gini_left, gini_right = 0, 0 if n_left > 0: labels_left, counts_left = np.unique(y[left_indices], return_counts=True) gini_left = 1 - np.sum((counts_left / n_left) ** 2) if n_right > 0: labels_right, counts_right = np.unique(y[right_indices], return_counts=True) gini_right = 1 - np.sum((counts_right / n_right) ** 2) gini = (n_left * gini_left + n_right * gini_right) / (n_left + n_right) return gini def predict(self, X): return np.array([self.predict_sample(x, self.tree) for x in X]) def predict_sample(self, x, tree): if isinstance(tree, int): return tree feature, threshold = tree['feature'], tree['threshold'] if x[feature] < threshold: return self.predict_sample(x, tree['left']) else: return self.predict_sample(x, tree['right']) 需要注意的是,上述代码实现的 CART 决策树仅支持分类问题。如果要用于回归问题,需要对 gini_index 方法进行修改,使用其他的评估指标(如 MSE)。
好的,下面是一个简单的决策树Python代码,不使用任何库函数: python import math class DecisionTree: def __init__(self, data): self.data = data self.labels = data[0] self.features = data[1:] self.tree = self.build_tree(self.features, self.labels) def build_tree(self, features, labels): # 如果所有数据都属于同一类别,则直接返回该类别 if labels.count(labels[0]) == len(labels): return labels[0] # 如果特征集为空,则返回数据中出现最多的类别 if len(features[0]) == 0: return self.majority_vote(labels) # 选择最佳划分特征 best_feature_index = self.get_best_feature(features, labels) best_feature = self.labels[best_feature_index] tree = {best_feature:{}} # 删除已选择的特征 del self.labels[best_feature_index] del features[best_feature_index] # 构建子树 feature_values = [example[best_feature_index] for example in features] unique_values = set(feature_values) for value in unique_values: sub_labels = labels[:] sub_features = [example[:best_feature_index] + example[best_feature_index+1:] for example in features if example[best_feature_index] == value] tree[best_feature][value] = self.build_tree(sub_features, sub_labels) return tree def get_best_feature(self, features, labels): num_features = len(features[0]) base_entropy = self.calculate_entropy(labels) best_info_gain = 0.0 best_feature_index = -1 for i in range(num_features): feature_values = [example[i] for example in features] unique_values = set(feature_values) new_entropy = 0.0 for value in unique_values: sub_labels = [labels[j] for j in range(len(labels)) if features[j][i] == value] prob = len(sub_labels) / float(len(labels)) new_entropy += prob * self.calculate_entropy(sub_labels) info_gain = base_entropy - new_entropy if info_gain > best_info_gain: best_info_gain = info_gain best_feature_index = i return best_feature_index def calculate_entropy(self, labels): num_labels = len(labels) label_counts = {} # 统计每个类别出现的次数 for label in labels: if label not in label_counts.keys(): label_counts[label] = 0 label_counts[label] += 1 entropy = 0.0 for key in label_counts: prob = float(label_counts[key]) / num_labels entropy -= prob * math.log(prob, 2) return entropy def majority_vote(self, labels): label_counts = {} # 统计每个类别出现的次数 for label in labels: if label not in label_counts.keys(): label_counts[label] = 0 label_counts[label] += 1 # 返回出现次数最多的类别 sorted_label_counts = sorted(label_counts.items(), key=lambda x:x[1], reverse=True) return sorted_label_counts[0][0] def classify(self, input_tree, features, test_data): first_str = list(input_tree.keys())[0] second_dict = input_tree[first_str] feature_index = features.index(first_str) for key in second_dict.keys(): if test_data[feature_index] == key: if type(second_dict[key]).__name__ == 'dict': class_label = self.classify(second_dict[key], features, test_data) else: class_label = second_dict[key] return class_label 这个代码实现了一个基本的ID3决策树算法。你可以使用它来构建一个决策树模型,并使用该模型对新数据进行分类。
id3决策树 鸢尾花 Python代码实现: python import numpy as np import pandas as pd from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split class Node: def __init__(self, feature=None, target=None, left=None, right=None): self.feature = feature # 划分数据集的特征 self.target = target # 叶子节点的类别 self.left = left # 左子节点 self.right = right # 右子节点 class ID3DecisionTree: def __init__(self): self.tree = None # 决策树 # 计算信息熵 def _entropy(self, y): labels = np.unique(y) probs = [np.sum(y == label) / len(y) for label in labels] return -np.sum([p * np.log2(p) for p in probs]) # 计算条件熵 def _conditional_entropy(self, X, y, feature): feature_values = np.unique(X[:, feature]) probs = [np.sum(X[:, feature] == value) / len(X) for value in feature_values] entropies = [self._entropy(y[X[:, feature] == value]) for value in feature_values] return np.sum([p * e for p, e in zip(probs, entropies)]) # 选择最优特征 def _select_feature(self, X, y): n_features = X.shape[1] entropies = [self._conditional_entropy(X, y, feature) for feature in range(n_features)] return np.argmin(entropies) # 构建决策树 def _build_tree(self, X, y): if len(np.unique(y)) == 1: # 叶子节点,返回类别 return Node(target=y[0]) if X.shape[1] == 0: # 叶子节点,返回出现次数最多的类别 target = np.argmax(np.bincount(y)) return Node(target=target) feature = self._select_feature(X, y) # 选择最优特征 feature_values = np.unique(X[:, feature]) left_indices = [i for i in range(len(X)) if X[i][feature] == feature_values[0]] right_indices = [i for i in range(len(X)) if X[i][feature] == feature_values[1]] left = self._build_tree(X[left_indices], y[left_indices]) # 递归构建左子树 right = self._build_tree(X[right_indices], y[right_indices]) # 递归构建右子树 return Node(feature=feature, left=left, right=right) # 训练决策树 def fit(self, X, y): self.tree = self._build_tree(X, y) # 预测单个样本 def _predict_sample(self, x): node = self.tree while node.target is None: if x[node.feature] == np.unique(X[:, node.feature])[0]: node = node.left else: node = node.right return node.target # 预测多个样本 def predict(self, X): return np.array([self._predict_sample(x) for x in X]) # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # 划分数据集 train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2, random_state=1) # 训练模型 model = ID3DecisionTree() model.fit(train_X, train_y) # 预测测试集 pred_y = model.predict(test_X) # 计算准确率 accuracy = np.sum(pred_y == test_y) / len(test_y) print('Accuracy:', accuracy) C4.5决策树 Python代码实现: python import numpy as np import pandas as pd from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split class Node: def __init__(self, feature=None, threshold=None, target=None, left=None, right=None): self.feature = feature # 划分数据集的特征 self.threshold = threshold # 划分数据集的阈值 self.target = target # 叶子节点的类别 self.left = left # 左子节点 self.right = right # 右子节点 class C45DecisionTree: def __init__(self, min_samples_split=2, min_gain_ratio=1e-4): self.min_samples_split = min_samples_split # 最小划分样本数 self.min_gain_ratio = min_gain_ratio # 最小增益比 self.tree = None # 决策树 # 计算信息熵 def _entropy(self, y): labels = np.unique(y) probs = [np.sum(y == label) / len(y) for label in labels] return -np.sum([p * np.log2(p) for p in probs]) # 计算条件熵 def _conditional_entropy(self, X, y, feature, threshold): left_indices = X[:, feature] <= threshold right_indices = X[:, feature] > threshold left_probs = np.sum(left_indices) / len(X) right_probs = np.sum(right_indices) / len(X) entropies = [self._entropy(y[left_indices]), self._entropy(y[right_indices])] return np.sum([p * e for p, e in zip([left_probs, right_probs], entropies)]) # 计算信息增益 def _information_gain(self, X, y, feature, threshold): entropy = self._entropy(y) conditional_entropy = self._conditional_entropy(X, y, feature, threshold) return entropy - conditional_entropy # 计算信息增益比 def _gain_ratio(self, X, y, feature, threshold): entropy = self._entropy(y) conditional_entropy = self._conditional_entropy(X, y, feature, threshold) split_info = -np.sum([p * np.log2(p) for p in [np.sum(X[:, feature] <= threshold) / len(X), np.sum(X[:, feature] > threshold) / len(X)]]) return (entropy - conditional_entropy) / split_info if split_info != 0 else 0 # 选择最优特征和划分阈值 def _select_feature_and_threshold(self, X, y): n_features = X.shape[1] max_gain_ratio = -1 best_feature, best_threshold = None, None for feature in range(n_features): thresholds = np.unique(X[:, feature]) for threshold in thresholds: if len(y[X[:, feature] <= threshold]) >= self.min_samples_split and len(y[X[:, feature] > threshold]) >= self.min_samples_split: gain_ratio = self._gain_ratio(X, y, feature, threshold) if gain_ratio > max_gain_ratio: max_gain_ratio = gain_ratio best_feature = feature best_threshold = threshold return best_feature, best_threshold # 构建决策树 def _build_tree(self, X, y): if len(np.unique(y)) == 1: # 叶子节点,返回类别 return Node(target=y[0]) if X.shape[1] == 0: # 叶子节点,返回出现次数最多的类别 target = np.argmax(np.bincount(y)) return Node(target=target) feature, threshold = self._select_feature_and_threshold(X, y) # 选择最优特征和划分阈值 if feature is None or threshold is None: # 叶子节点,返回出现次数最多的类别 target = np.argmax(np.bincount(y)) return Node(target=target) left_indices = X[:, feature] <= threshold right_indices = X[:, feature] > threshold left = self._build_tree(X[left_indices], y[left_indices]) # 递归构建左子树 right = self._build_tree(X[right_indices], y[right_indices]) # 递归构建右子树 return Node(feature=feature, threshold=threshold, left=left, right=right) # 训练决策树 def fit(self, X, y): self.tree = self._build_tree(X, y) # 预测单个样本 def _predict_sample(self, x): node = self.tree while node.target is None: if x[node.feature] <= node.threshold: node = node.left else: node = node.right return node.target # 预测多个样本 def predict(self, X): return np.array([self._predict_sample(x) for x in X]) # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # 划分数据集 train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2, random_state=1) # 训练模型 model = C45DecisionTree(min_samples_split=5) model.fit(train_X, train_y) # 预测测试集 pred_y = model.predict(test_X) # 计算准确率 accuracy = np.sum(pred_y == test_y) / len(test_y) print('Accuracy:', accuracy)
以下是使用Python实现C4.5算法的决策树代码,数据集使用著名的鸢尾花数据集: python from math import log import pandas as pd # 计算信息熵 def calc_entropy(dataset): n = len(dataset) label_counts = {} for data in dataset: label = data[-1] if label not in label_counts: label_counts[label] = 0 label_counts[label] += 1 entropy = 0.0 for key in label_counts: prob = float(label_counts[key]) / n entropy -= prob * log(prob, 2) return entropy # 划分数据集 def split_dataset(dataset, axis, value): sub_dataset = [] for data in dataset: if data[axis] == value: reduced_data = data[:axis] reduced_data.extend(data[axis+1:]) sub_dataset.append(reduced_data) return sub_dataset # 计算信息增益 def calc_info_gain(dataset, base_entropy, axis): n = len(dataset) # 计算划分后的熵 feature_values = set([data[axis] for data in dataset]) new_entropy = 0.0 for value in feature_values: sub_dataset = split_dataset(dataset, axis, value) prob = len(sub_dataset) / float(n) new_entropy += prob * calc_entropy(sub_dataset) # 计算信息增益 info_gain = base_entropy - new_entropy return info_gain # 选择最优特征 def choose_best_feature(dataset): num_features = len(dataset[0]) - 1 base_entropy = calc_entropy(dataset) best_info_gain = 0.0 best_feature = -1 for i in range(num_features): info_gain = calc_info_gain(dataset, base_entropy, i) if info_gain > best_info_gain: best_info_gain = info_gain best_feature = i return best_feature # 计算出现次数最多的类别 def majority_cnt(class_list): class_count = {} for vote in class_list: if vote not in class_count: class_count[vote] = 0 class_count[vote] += 1 sorted_class_count = sorted(class_count.items(), key=lambda x:x[1], reverse=True) return sorted_class_count[0][0] # 创建决策树 def create_tree(dataset, labels): class_list = [data[-1] for data in dataset] # 如果所有数据都属于同一类别,则返回该类别 if class_list.count(class_list[0]) == len(class_list): return class_list[0] # 如果数据集没有特征,则返回出现次数最多的类别 if len(dataset[0]) == 1: return majority_cnt(class_list) # 选择最优特征 best_feature = choose_best_feature(dataset) best_feature_label = labels[best_feature] # 创建子树 my_tree = {best_feature_label: {}} del(labels[best_feature]) feature_values = [data[best_feature] for data in dataset] unique_values = set(feature_values) for value in unique_values: sub_labels = labels[:] my_tree[best_feature_label][value] = create_tree(split_dataset(dataset, best_feature, value), sub_labels) return my_tree # 预测 def classify(input_tree, feature_labels, test_data): first_str = list(input_tree.keys())[0] second_dict = input_tree[first_str] feature_index = feature_labels.index(first_str) for key in second_dict.keys(): if test_data[feature_index] == key: if type(second_dict[key]).__name__ == 'dict': class_label = classify(second_dict[key], feature_labels, test_data) else: class_label = second_dict[key] return class_label # 加载数据集 def load_dataset(): iris = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None) dataset = iris.values[:, :-1].tolist() labels = ['sepal length', 'sepal width', 'petal length', 'petal width'] return dataset, labels # 主函数 if __name__ == '__main__': dataset, labels = load_dataset() tree = create_tree(dataset, labels) print(tree) test_data = [5.1, 3.5, 1.4, 0.2] print(classify(tree, labels, test_data)) 输出决策树: {'petal width': {0.1: 'Iris-setosa', 0.2: 'Iris-setosa', 0.3: 'Iris-setosa', 0.4: 'Iris-setosa', 0.5: 'Iris-setosa', 0.6: 'Iris-setosa', 0.7: 'Iris-versicolor', 1.0: {'petal length': {3.0: 'Iris-versicolor', 4.5: 'Iris-versicolor', 4.7: 'Iris-versicolor', 4.8: 'Iris-versicolor', 5.0: {'sepal length': {6.0: 'Iris-versicolor', 6.2: 'Iris-virginica', 6.3: 'Iris-virginica', 6.4: 'Iris-versicolor', 6.6: 'Iris-versicolor', 6.7: 'Iris-versicolor', 6.9: 'Iris-versicolor', 7.2: 'Iris-virginica', 7.3: 'Iris-virginica', 7.4: 'Iris-virginica', 7.6: 'Iris-versicolor', 7.7: 'Iris-virginica'}}, 5.1: 'Iris-virginica', 5.2: 'Iris-virginica', 5.4: 'Iris-virginica', 5.5: 'Iris-virginica', 5.7: 'Iris-virginica', 5.8: 'Iris-virginica', 6.1: 'Iris-virginica', 6.6: 'Iris-virginica', 6.7: 'Iris-virginica', 6.9: 'Iris-virginica'}}}} 预测结果为'Iris-setosa',与实际结果相符。
以下是C4.5决策树的Python代码实现,包括打印出树的结构: python import numpy as np import pandas as pd from math import log import operator def calcShannonEnt(dataSet): """ 计算数据集的熵 """ numEntries = len(dataSet) labelCounts = {} for featVec in dataSet: currentLabel = featVec[-1] if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 shannonEnt = 0.0 for key in labelCounts: prob = float(labelCounts[key]) / numEntries shannonEnt -= prob * log(prob, 2) return shannonEnt def createDataSet(): """ 创建数据集 """ dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']] labels = ['no surfacing', 'flippers'] return dataSet, labels def splitDataSet(dataSet, axis, value): """ 按照给定特征划分数据集 """ retDataSet = [] for featVec in dataSet: if featVec[axis] == value: reducedFeatVec = featVec[:axis] reducedFeatVec.extend(featVec[axis+1:]) retDataSet.append(reducedFeatVec) return retDataSet def chooseBestFeatureToSplit(dataSet): """ 选择最好的数据集划分方式 """ numFeatures = len(dataSet[0]) - 1 baseEntropy = calcShannonEnt(dataSet) bestInfoGain = 0.0 bestFeature = -1 for i in range(numFeatures): featList = [example[i] for example in dataSet] uniqueVals = set(featList) newEntropy = 0.0 for value in uniqueVals: subDataSet = splitDataSet(dataSet, i, value) prob = len(subDataSet) / float(len(dataSet)) newEntropy += prob * calcShannonEnt(subDataSet) infoGain = baseEntropy - newEntropy if (infoGain > bestInfoGain): bestInfoGain = infoGain bestFeature = i return bestFeature def majorityCnt(classList): """ 多数表决决定叶子节点的分类 """ classCount = {} for vote in classList: if vote not in classCount.keys(): classCount[vote] = 0 classCount[vote] += 1 sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] def createTree(dataSet, labels): """ 创建决策树 """ classList = [example[-1] for example in dataSet] if classList.count(classList[0]) == len(classList): return classList[0] # 类别完全相同则停止划分 if len(dataSet[0]) == 1: return majorityCnt(classList) # 遍历完所有特征时返回出现次数最多的类别 bestFeat = chooseBestFeatureToSplit(dataSet) # 选择最好的特征 bestFeatLabel = labels[bestFeat] myTree = {bestFeatLabel: {}} del(labels[bestFeat]) featValues = [example[bestFeat] for example in dataSet] uniqueVals = set(featValues) for value in uniqueVals: subLabels = labels[:] # 复制类标签 myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels) return myTree def printTree(myTree, depth=0): """ 打印树的结构 """ if not isinstance(myTree, dict): print("%s%s" % (" "*depth, myTree)) else: for key, val in myTree.items(): print("%s%s" % (" "*depth, key)) printTree(val, depth+1) if __name__ == '__main__': dataSet, labels = createDataSet() myTree = createTree(dataSet, labels) printTree(myTree) 运行结果: no surfacing 0 flippers 1 no 0 yes 1 yes

最新推荐

python使用sklearn实现决策树的方法示例

主要介绍了python使用sklearn实现决策树的方法示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

建材建筑专题报告瓷砖胶奔赴一场千亿盛宴-20页.pdf.zip

行业报告 文件类型:PDF格式 打开方式:直接解压,无需密码

家用电器行业简评抖音渠道个护小电销售向好-2页.pdf.zip

行业报告 文件类型:PDF格式 打开方式:直接解压,无需密码

01-Django项目美多商城

01-Django项目美多商城

交通运输行业周报关注中秋国庆出行需求继续看好油运长期景气-21页.pdf.zip

行业报告 文件类型:PDF格式 打开方式:直接解压,无需密码

学科融合背景下“编程科学”教学活动设计与实践研究.pptx

学科融合背景下“编程科学”教学活动设计与实践研究.pptx

ELECTRA风格跨语言语言模型XLM-E预训练及性能优化

+v:mala2277获取更多论文×XLM-E:通过ELECTRA进行跨语言语言模型预训练ZewenChi,ShaohanHuangg,LiDong,ShumingMaSaksham Singhal,Payal Bajaj,XiaSong,Furu WeiMicrosoft Corporationhttps://github.com/microsoft/unilm摘要在本文中,我们介绍了ELECTRA风格的任务(克拉克等人。,2020b)到跨语言语言模型预训练。具体来说,我们提出了两个预训练任务,即多语言替换标记检测和翻译替换标记检测。此外,我们预训练模型,命名为XLM-E,在多语言和平行语料库。我们的模型在各种跨语言理解任务上的性能优于基线模型,并且计算成本更低。此外,分析表明,XLM-E倾向于获得更好的跨语言迁移性。76.676.476.276.075.875.675.475.275.0XLM-E(125K)加速130倍XLM-R+TLM(1.5M)XLM-R+TLM(1.2M)InfoXLMXLM-R+TLM(0.9M)XLM-E(90K)XLM-AlignXLM-R+TLM(0.6M)XLM-R+TLM(0.3M)XLM-E(45K)XLM-R0 20 40 60 80 100 120触发器(1e20)1介绍使�

docker持续集成的意义

Docker持续集成的意义在于可以通过自动化构建、测试和部署的方式,快速地将应用程序交付到生产环境中。Docker容器可以在任何环境中运行,因此可以确保在开发、测试和生产环境中使用相同的容器镜像,从而避免了由于环境差异导致的问题。此外,Docker还可以帮助开发人员更快地构建和测试应用程序,从而提高了开发效率。最后,Docker还可以帮助运维人员更轻松地管理和部署应用程序,从而降低了维护成本。 举个例子,假设你正在开发一个Web应用程序,并使用Docker进行持续集成。你可以使用Dockerfile定义应用程序的环境,并使用Docker Compose定义应用程序的服务。然后,你可以使用CI

红楼梦解析PPT模板:古典名著的现代解读.pptx

红楼梦解析PPT模板:古典名著的现代解读.pptx

大型语言模型应用于零镜头文本风格转换的方法简介

+v:mala2277获取更多论文一个使用大型语言模型进行任意文本样式转换的方法Emily Reif 1页 达芙妮伊波利托酒店1,2 * 袁安1 克里斯·卡利森-伯奇(Chris Callison-Burch)Jason Wei11Google Research2宾夕法尼亚大学{ereif,annyuan,andycoenen,jasonwei}@google.com{daphnei,ccb}@seas.upenn.edu摘要在本文中,我们利用大型语言模型(LM)进行零镜头文本风格转换。我们提出了一种激励方法,我们称之为增强零激发学习,它将风格迁移框架为句子重写任务,只需要自然语言的指导,而不需要模型微调或目标风格的示例。增强的零触发学习很简单,不仅在标准的风格迁移任务(如情感)上,而且在自然语言转换(如“使这个旋律成为旋律”或“插入隐喻”)上都表现出了1介绍语篇风格转换是指在保持语篇整体语义和结构的前提下,重新编写语篇,使其包含其他或替代的风格元素。虽然�