PCL汉明距离匹配代码
时间: 2023-07-02 19:16:38 浏览: 163
以下是PCL库中使用汉明距离进行匹配的示例代码:
```cpp
#include <iostream>
#include <pcl/point_cloud.h>
#include <pcl/io/pcd_io.h>
#include <pcl/features/feature.h>
#include <pcl/features/fpfh.h>
#include <pcl/search/kdtree.h>
int main(int argc, char** argv) {
// 读取两个点云
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud1(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2(new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile<pcl::PointXYZ>("cloud1.pcd", *cloud1);
pcl::io::loadPCDFile<pcl::PointXYZ>("cloud2.pcd", *cloud2);
// 计算FPFH特征
pcl::FPFHEstimation<pcl::PointXYZ, pcl::FPFHSignature33> fpfh;
fpfh.setInputCloud(cloud1);
fpfh.setInputCloud(cloud2);
pcl::PointCloud<pcl::FPFHSignature33>::Ptr fpfhs1(new pcl::PointCloud<pcl::FPFHSignature33>);
pcl::PointCloud<pcl::FPFHSignature33>::Ptr fpfhs2(new pcl::PointCloud<pcl::FPFHSignature33>);
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
fpfh.setSearchMethod(tree);
fpfh.setRadiusSearch(0.05);
fpfh.compute(*fpfhs1);
fpfh.compute(*fpfhs2);
// 使用汉明距离进行匹配
pcl::CorrespondencesPtr correspondences(new pcl::Correspondences);
for (int i = 0; i < fpfhs1->size(); ++i) {
int minIndex = -1;
uint64_t minDistance = std::numeric_limits<uint64_t>::max();
pcl::FPFHSignature33& target = fpfhs1->points[i];
for (int j = 0; j < fpfhs2->size(); ++j) {
pcl::FPFHSignature33& candidate = fpfhs2->points[j];
uint64_t distance = 0;
for (int k = 0; k < 33; ++k) {
uint64_t diff = target.histogram[k] ^ candidate.histogram[k];
while (diff) {
++distance;
diff &= diff - 1;
}
}
if (distance < minDistance) {
minDistance = distance;
minIndex = j;
}
}
if (minIndex >= 0) {
correspondences->push_back(pcl::Correspondence(i, minIndex, minDistance));
}
}
// 输出匹配结果
for (int i = 0; i < correspondences->size(); ++i) {
pcl::Correspondence& correspondence = correspondences->at(i);
std::cout << "correspondence " << i << ": cloud1[" << correspondence.index_query
<< "] <-> cloud2[" << correspondence.index_match << "] (distance: " << correspondence.distance
<< ")" << std::endl;
}
return 0;
}
```
这段代码读取了两个点云,使用FPFH特征描述子对它们进行特征提取,然后使用汉明距离进行匹配,并输出匹配结果。对于每个目标特征点,遍历所有候选特征点,计算它们的汉明距离,并选取距离最小的作为匹配点。最后将匹配结果存储在`pcl::CorrespondencesPtr`类型的指针中,每个匹配点包含两个点云中的点的索引和它们之间的距离。
阅读全文