PCL汉明距离特征匹配点对代码
时间: 2023-07-10 19:13:08 浏览: 183
以下是使用 PCL 库实现的汉明距离特征匹配点对的示例代码:
```cpp
#include <pcl/features/fpfh.h>
#include <pcl/features/normal_3d_omp.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/registration/correspondence_rejection_sample_consensus.h>
#include <pcl/registration/icp.h>
#include <pcl/visualization/pcl_visualizer.h>
typedef pcl::PointXYZ PointT;
typedef pcl::PointCloud<PointT> PointCloudT;
typedef pcl::FPFHSignature33 FeatureT;
typedef pcl::PointCloud<FeatureT> FeatureCloudT;
int main(int argc, char** argv)
{
// 加载点云数据
PointCloudT::Ptr source_cloud(new PointCloudT);
PointCloudT::Ptr target_cloud(new PointCloudT);
pcl::io::loadPCDFile("source.pcd", *source_cloud);
pcl::io::loadPCDFile("target.pcd", *target_cloud);
// 计算法向量
pcl::NormalEstimationOMP<PointT, pcl::Normal> ne;
ne.setNumberOfThreads(8);
ne.setInputCloud(source_cloud);
pcl::search::KdTree<PointT>::Ptr tree(new pcl::search::KdTree<PointT>());
ne.setSearchMethod(tree);
pcl::PointCloud<pcl::Normal>::Ptr source_normals(new pcl::PointCloud<pcl::Normal>);
ne.setRadiusSearch(0.03);
ne.compute(*source_normals);
ne.setInputCloud(target_cloud);
pcl::PointCloud<pcl::Normal>::Ptr target_normals(new pcl::PointCloud<pcl::Normal>);
ne.compute(*target_normals);
// 计算特征向量
pcl::FPFHEstimation<PointT, pcl::Normal, FeatureT> fe;
fe.setInputCloud(source_cloud);
fe.setInputNormals(source_normals);
fe.setSearchMethod(tree);
FeatureCloudT::Ptr source_features(new FeatureCloudT);
fe.setRadiusSearch(0.05);
fe.compute(*source_features);
fe.setInputCloud(target_cloud);
fe.setInputNormals(target_normals);
FeatureCloudT::Ptr target_features(new FeatureCloudT);
fe.compute(*target_features);
// 找到匹配点对
pcl::CorrespondencesPtr correspondences(new pcl::Correspondences);
for (size_t i = 0; i < source_features->size(); ++i)
{
int k = -1;
float min_distance = std::numeric_limits<float>::max();
for (size_t j = 0; j < target_features->size(); ++j)
{
float distance = 0;
for (int k = 0; k < 33; ++k)
{
if (source_features->points[i].histogram[k] != target_features->points[j].histogram[k])
{
distance++;
}
}
if (distance < min_distance)
{
min_distance = distance;
k = j;
}
}
if (k >= 0)
{
correspondences->push_back(pcl::Correspondence(i, k, min_distance));
}
}
// 根据匹配点对进行 ICP 变换
pcl::IterativeClosestPoint<PointT, PointT> icp;
icp.setInputSource(source_cloud);
icp.setInputTarget(target_cloud);
icp.setMaxCorrespondenceDistance(0.05);
pcl::CorrespondencesPtr correspondences_filtered(new pcl::Correspondences);
pcl::registration::CorrespondenceRejectorSampleConsensus<PointT>::Ptr ransac(new pcl::registration::CorrespondenceRejectorSampleConsensus<PointT>());
ransac->setInputSource(source_cloud);
ransac->setInputTarget(target_cloud);
ransac->setInlierThreshold(0.05);
ransac->setMaximumIterations(1000);
ransac->setInputCorrespondences(correspondences);
ransac->getCorrespondences(*correspondences_filtered);
icp.setCorrespondences(correspondences_filtered);
PointCloudT::Ptr aligned_cloud(new PointCloudT);
icp.align(*aligned_cloud);
// 可视化结果
pcl::visualization::PCLVisualizer viewer("PCL Viewer");
viewer.addPointCloud(source_cloud, "source_cloud");
viewer.addPointCloud(target_cloud, "target_cloud");
viewer.addPointCloud(aligned_cloud, "aligned_cloud");
viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 1.0, 0.0, 0.0, "source_cloud");
viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 0.0, 1.0, 0.0, "target_cloud");
viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 0.0, 0.0, 1.0, "aligned_cloud");
viewer.spin();
return 0;
}
```
以上代码实现了通过汉明距离计算特征匹配点对,并使用 ICP 算法进行配准的功能。在代码中,我们首先使用 PCL 库计算点云数据的法向量和特征向量,然后遍历所有的特征向量,计算它们之间的汉明距离,并找到它们之间的匹配点对。最后,使用 ICP 算法将源点云和目标点云进行配准,并将结果可视化展示出来。
阅读全文