def txt_file_preprocessing2(): """将第二个文件中的字符串拆分,得到和类别名称的对应关系""" with open(txt2, 'r') as file2: # 以只读模式打开,跳过文件前两行 lines = file2.readlines()[2:] for line in lines: tokens = re.split(r'\s+', line.strip()) imgname_type_dict = { key: value in for key,value in (name, label) for name, label in tokens } 检查代码
时间: 2024-01-16 18:01:50 浏览: 59
这段代码有一些语法错误,应该改为:
```
import re
def txt_file_preprocessing2(txt2):
"""
将第二个文件中的字符串拆分,得到和类别名称的对应关系
"""
imgname_type_dict = {}
with open(txt2, 'r') as file2:
# 以只读模式打开,跳过文件前两行
lines = file2.readlines()[2:]
for line in lines:
tokens = re.split(r'\s+', line.strip())
name = tokens[0]
label = tokens[1]
imgname_type_dict[name] = label
return imgname_type_dict
```
这个函数可以读取一个文本文件,将文件中每一行字符串拆分成两个部分,分别表示图像名称和图像的类别名称,然后将它们存储在一个字典中并返回。
相关问题
将下列代码补全:# Data Loading and Preprocessing def load_and_preprocess_data(): # 加载雷达和ECG数据 # 数据归一化和预处理 pass
要完成这个函数,你需要首先导入必要的库,然后加载雷达和ECG数据。如果数据存储在文件中,可以使用pandas读取CSV文件;如果是从网络获取,可以用像`requests`这样的库。接着,数据预处理通常是将数值型特征缩放到0到1之间,或者根据需求标准化。对于分类特征,你可能需要转换成独热编码。这里是一个示例代码:
```python
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
def load_and_preprocess_data():
# 加载雷达和ECG数据
if data_path.endswith('.csv'):
radar_data = pd.read_csv('radar_data.csv')
ecg_data = pd.read_csv('ecg_data.csv')
else:
# 如果数据是从网络获取,替换为适当的URL或API请求
radar_data = requests.get('radar_data_url').content
ecg_data = requests.get('ecg_data_url').content
# 数据归一化
scaler = MinMaxScaler()
radar_data_normalized = scaler.fit_transform(radar_data)
ecg_data_normalized = scaler.transform(ecg_data)
# 结合两个数据集
combined_data = pd.concat([pd.DataFrame(radar_data_normalized), pd.DataFrame(ecg_data_normalized)], axis=1)
# 返回预处理后的数据
return combined_data
```
在这个例子中,我们假设数据已经按照每列对应的方式分开存储,如果没有,则可能需要进一步拆分或合并数据。
标签字段名称调整:将 file_name 和 label 改为 文件名 和 标签,以匹配 JSON 文件中的实际字段名称。将完整的代码列出
为了将 `file_name` 和 `label` 字段改为 `文件名` 和 `标签`,我们需要对代码中涉及这些字段的部分进行相应的修改。以下是修改后的完整代码:
```python
import os
import json
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, f1_score
# 数据路径
data_dir = 'C:/Users/24067/Desktop/peach_split'
train_dir = os.path.join(data_dir, 'train')
val_dir = os.path.join(data_dir, 'val')
# 加载标签
with open('C:/Users/24067/Desktop/train_label.json', 'r') as f:
train_labels = json.load(f)
with open('C:/Users/24067/Desktop/val_label.json', 'r') as f:
val_labels = json.load(f)
# 将标签转换为DataFrame
train_df = pd.DataFrame(list(train_labels.items()), columns=['文件名', '标签'])
val_df = pd.DataFrame(list(val_labels.items()), columns=['文件名', '标签'])
# 映射标签到数字
label_map = {'特级': 0, '一级': 1, '二级': 2, '三级': 3}
train_df['标签'] = train_df['标签'].map(label_map)
val_df['标签'] = val_df['标签'].map(label_map)
# 图像数据生成器
image_size = (224, 224)
batch_size = 32
train_datagen = ImageDataGenerator(rescale=1./255, validation_split=0.2)
train_generator = train_datagen.flow_from_dataframe(
dataframe=train_df,
directory=train_dir,
x_col='文件名',
y_col='标签',
target_size=image_size,
batch_size=batch_size,
class_mode='sparse',
subset='training'
)
validation_generator = train_datagen.flow_from_dataframe(
dataframe=train_df,
directory=train_dir,
x_col='文件名',
y_col='标签',
target_size=image_size,
batch_size=batch_size,
class_mode='sparse',
subset='validation'
)
val_datagen = ImageDataGenerator(rescale=1./255)
val_generator = val_datagen.flow_from_dataframe(
dataframe=val_df,
directory=val_dir,
x_col='文件名',
y_col='标签',
target_size=image_size,
batch_size=batch_size,
class_mode='sparse'
)
model = Sequential([
Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)),
MaxPooling2D((2, 2)),
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Conv2D(128, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Conv2D(128, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Flatten(),
Dense(512, activation='relu'),
Dropout(0.5),
Dense(4, activation='softmax')
])
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
history = model.fit(
train_generator,
steps_per_epoch=len(train_generator),
epochs=20,
validation_data=validation_generator,
validation_steps=len(validation_generator)
)
# 在验证集上评估模型
val_loss, val_acc = model.evaluate(val_generator, steps=len(val_generator))
print(f'Validation Accuracy: {val_acc:.4f}')
# 预测并计算F1值
y_true = []
y_pred = []
for i in range(len(val_generator)):
images, labels = next(val_generator)
predictions = model.predict(images)
y_true.extend(labels)
y_pred.extend(np.argmax(predictions, axis=1))
y_true = np.array(y_true)
y_pred = np.array(y_pred)
f1 = f1_score(y_true, y_pred, average=None)
print(f'F1 Scores: {f1}')
# 读取测试集数据
test_dir = os.path.join(data_dir, 'test')
test_filenames = os.listdir(test_dir)
test_df = pd.DataFrame({'文件名': test_filenames})
test_datagen = ImageDataGenerator(rescale=1./255)
test_generator = test_datagen.flow_from_dataframe(
dataframe=test_df,
directory=test_dir,
x_col='文件名',
y_col=None,
target_size=image_size,
batch_size=batch_size,
class_mode=None,
shuffle=False
)
# 预测测试集
predictions = model.predict(test_generator)
predicted_classes = np.argmax(predictions, axis=1)
predicted_labels = [list(label_map.keys())[i] for i in predicted_classes]
# 创建提交文件
submission_df = pd.DataFrame({'文件名': test_filenames, '标签': predicted_labels})
submission_df.to_csv('submission.csv', index=False)
model.save('peach_grading_model.h5')
```
在这个版本的代码中,所有涉及 `file_name` 和 `label` 的地方都已替换为 `文件名` 和 `标签`,以匹配 JSON 文件中的实际字段名称。
阅读全文