基于GA-MUSIC的matlab算法代码实现
时间: 2023-10-09 09:09:12 浏览: 147
基于matlab的遗传算法GA代码实现
以下是基于GA-MUSIC的MATLAB算法代码实现的示例:
```matlab
%% GA-MUSIC Algorithm Implementation
% Created by [Your Name]
% Reference: [Reference Paper]
clc; clear all; close all;
%% Parameters
% Signal parameters
N = 100; % Number of samples
M = 5; % Number of sources
P = 10; % Number of sensors
SNR = 10; % Signal-to-Noise Ratio
% GA-MUSIC parameters
pop_size = 50; % Population size
num_gen = 100; % Number of generations
mut_rate = 0.1; % Mutation rate
elite_frac = 0.2; % Fraction of elite individuals
sel_frac = 0.5; % Fraction of selected individuals
% Other parameters
c = physconst('LightSpeed'); % Speed of light
f = 2.4e9; % Signal frequency
d = c/(2*f); % Sensor spacing
theta = (-90:1:90)*pi/180; % Search range for DOA estimation
%% Generate Data
% Generate signal
A = randn(M,P); % Mixing matrix
S = randn(M,N); % Source signal
X = A*S; % Mixed signal
% Add noise
noise_var = norm(X,'fro')^2/(P*N*10^(SNR/10));
N = sqrt(noise_var)*randn(P,N);
X = X + N;
%% GA-MUSIC
% Initialize population
pop = zeros(pop_size,M,P);
for i = 1:pop_size
pop(i,:,:) = rand(M,P);
end
% Iterate over generations
for gen = 1:num_gen
% Evaluate fitness
fitness = zeros(pop_size,1);
for i = 1:pop_size
W = squeeze(pop(i,:,:));
[~,~,~,~,fitness(i)] = music(X,W,d,f,theta);
end
% Sort population by fitness
[fitness,idx] = sort(fitness,'descend');
pop = pop(idx,:,:);
% Keep elite individuals
elite_size = round(elite_frac*pop_size);
elite = pop(1:elite_size,:,:);
% Select parents
sel_size = round(sel_frac*pop_size);
sel_idx = randperm(pop_size,sel_size);
sel = pop(sel_idx,:,:);
% Crossover and mutate
new_pop = zeros(pop_size,M,P);
for i = 1:pop_size
% Crossover
p1 = sel(randi(sel_size),:,:);
p2 = sel(randi(sel_size),:,:);
mask = rand(M,P) > 0.5;
new_pop(i,:,:) = mask.*p1 + (1-mask).*p2;
% Mutate
if rand() < mut_rate
new_pop(i,:,:) = new_pop(i,:,:) + randn(M,P);
end
end
% Combine elite, new population, and random individuals
pop = cat(1,elite,new_pop);
pop = cat(1,pop,rand(pop_size-pop_size*elite_frac, M, P));
end
% Get final best individual
W = squeeze(pop(1,:,:));
% Estimate DOA using MUSIC
[power,doa] = music(X,W,d,f,theta);
%% Results
% Plot results
figure;
plot(theta*180/pi,power);
xlabel('Angle (degrees)');
ylabel('Power (dB)');
title('GA-MUSIC DOA Estimation');
% Print estimated DOA
fprintf('Estimated DOA: %.2f degrees\n',doa*180/pi);
```
注意:该示例中使用了一个名为 music 的函数,该函数的输入参数为混合信号 X、传感器位置矩阵 W、传感器间距 d、信号频率 f 和搜索范围 theta,输出参数为估计的信号功率和方向(即DOA)。你需要编写这个函数以完成基于GA-MUSIC的MATLAB算法的完整实现。
阅读全文