怎么把convlstm的输出和lenet网络结合起来pytorch
时间: 2024-02-29 11:57:23 浏览: 62
要将ConvLSTM的输出和LeNet网络结合起来,需要使用PyTorch中的nn.Sequential()函数将两个网络连接起来。以下是一个示例代码,其中ConvLSTM和LeNet都是自定义的网络模块:
```python
import torch.nn as nn
class ConvLSTM(nn.Module):
def __init__(self, input_size, hidden_size, kernel_size):
super(ConvLSTM, self).__init__()
# define ConvLSTM layers
...
class LeNet(nn.Module):
def __init__(self, num_classes=10):
super(LeNet, self).__init__()
# define LeNet layers
...
# combine ConvLSTM and LeNet
class CombinedNet(nn.Module):
def __init__(self, input_size, hidden_size, kernel_size, num_classes=10):
super(CombinedNet, self).__init__()
self.convlstm = ConvLSTM(input_size, hidden_size, kernel_size)
self.lenet = LeNet(num_classes=num_classes)
self.fc = nn.Linear(10, num_classes)
def forward(self, x):
# get ConvLSTM output
convlstm_output = self.convlstm(x)
# flatten output and pass through LeNet
lenet_output = self.lenet(convlstm_output.view(-1, 1, 28, 28))
# pass through fully connected layer
output = self.fc(lenet_output)
return output
```
在CombinedNet中,我们将ConvLSTM和LeNet连接在一起,并且添加了一个全连接层(fc)以生成最终的输出。在forward()函数中,我们首先将输入(x)传递给ConvLSTM,然后将输出展平并通过LeNet,最后将输出传递给全连接层(fc)。
阅读全文