鸢尾花决策树,python实现,需要基尼指数,还有分析过程,代码实现
时间: 2023-06-08 17:03:54 浏览: 111
决策树实现对鸢尾花分类
好的,关于鸢尾花决策树的Python实现,以下是实现过程和详细代码:
1. 数据预处理
首先,我们需要导入必要的库,并将鸢尾花数据集进行分割,分成训练集和测试集。
``` python
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=42)
```
2. 决策树算法
接下来,我们用基尼指数来划分决策树节点。
``` python
import numpy as np
def gini(y):
_, counts = np.unique(y, return_counts=True)
proportions = counts / len(y)
return 1 - np.sum(proportions ** 2)
def split(X, y):
best_gini = 1
best_feature = None
best_value = None
for feature_idx in range(X.shape[1]):
feature_values = X[:, feature_idx]
for value in feature_values:
y_left = y[X[:, feature_idx] < value]
y_right = y[X[:, feature_idx] >= value]
gini_left = gini(y_left)
gini_right = gini(y_right)
gini_score = (len(y_left) / len(y)) * gini_left + (len(y_right) / len(y)) * gini_right
if gini_score < best_gini:
best_gini = gini_score
best_feature = feature_idx
best_value = value
return best_feature, best_value
```
3. 构建决策树
接下来,我们需要递归构建决策树。
```python
class Node:
def __init__(self, feature, value, left=None, right=None):
self.feature = feature
self.value = value
self.left = left
self.right = right
def build_tree(X, y):
feature, value = split(X, y)
left_mask = X[:, feature] < value
right_mask = X[:, feature] >= value
left_X, left_y = X[left_mask], y[left_mask]
right_X, right_y = X[right_mask], y[right_mask]
if len(left_y) == 0 or len(right_y) == 0:
return Node(None, None, predict(left_y + right_y))
return Node(feature, value, build_tree(left_X, left_y), build_tree(right_X, right_y))
```
4. 预测
最后,我们可以使用该决策树来对测试集进行预测。
```python
def predict_one(node, x):
if node.left is None and node.right is None:
return node.predicted_class
if x[node.feature] < node.value:
return predict_one(node.left, x)
else:
return predict_one(node.right, x)
def predict(node, X):
return np.array([predict_one(node, x) for x in X])
tree = build_tree(X_train, y_train)
y_pred = predict(tree, X_test)
```
以上就是基于基尼指数的鸢尾花决策树的Python实现过程和详细代码。
阅读全文