在Qt中用c++代码实现调用遥感地图语义分割的深度学习模型来进行图片预测
时间: 2024-02-16 10:04:05 浏览: 136
用C++及QT实现的地图功能
4星 · 用户满意度95%
以下是使用TensorFlow C++ API在Qt中调用遥感地图语义分割深度学习模型进行图片预测的代码示例:
```c++
#include <tensorflow/cc/client/client_session.h>
#include <tensorflow/cc/ops/standard_ops.h>
#include <tensorflow/core/framework/tensor.h>
#include <tensorflow/core/framework/tensor_shape.h>
#include <tensorflow/core/graph/default_device.h>
#include <tensorflow/core/platform/env.h>
#include <tensorflow/core/platform/logging.h>
#include <tensorflow/core/public/session.h>
#include <QImage>
using namespace tensorflow;
// 加载模型文件
Status LoadModel(Session* session, const std::string& filename) {
GraphDef graph_def;
Status status = ReadBinaryProto(Env::Default(), filename, &graph_def);
if (!status.ok()) {
return status;
}
// 将模型文件加载到session中
status = session->Create(graph_def);
if (!status.ok()) {
return status;
}
return Status::OK();
}
// 图片预处理,将QImage转换为TensorFlow可用的数据格式
void PreprocessImage(const QImage& image, Tensor* input_tensor) {
const int width = image.width();
const int height = image.height();
const int channels = 3;
auto input_tensor_mapped = input_tensor->tensor<float, 4>();
for (int y = 0; y < height; ++y) {
const QRgb* row = reinterpret_cast<const QRgb*>(image.scanLine(y));
for (int x = 0; x < width; ++x) {
const QRgb pixel = row[x];
const float r = qRed(pixel) / 255.0f;
const float g = qGreen(pixel) / 255.0f;
const float b = qBlue(pixel) / 255.0f;
input_tensor_mapped(0, y, x, 0) = r;
input_tensor_mapped(0, y, x, 1) = g;
input_tensor_mapped(0, y, x, 2) = b;
}
}
}
// 图片后处理,将模型输出的结果转换为QImage
QImage PostprocessOutput(const Tensor& output_tensor) {
const int width = output_tensor.shape().dim_size(2);
const int height = output_tensor.shape().dim_size(1);
QImage result(width, height, QImage::Format_RGB888);
auto output_tensor_mapped = output_tensor.tensor<float, 4>();
for (int y = 0; y < height; ++y) {
QRgb* row = reinterpret_cast<QRgb*>(result.scanLine(y));
for (int x = 0; x < width; ++x) {
const float r = output_tensor_mapped(0, y, x, 0);
const float g = output_tensor_mapped(0, y, x, 1);
const float b = output_tensor_mapped(0, y, x, 2);
// 将模型输出的RGB值转换为QColor,并写入QImage中
const QColor color(r * 255.0f, g * 255.0f, b * 255.0f);
row[x] = color.rgb();
}
}
return result;
}
// 进行图片预测
QImage PredictImage(const QImage& input_image, Session* session) {
Tensor input_tensor(DT_FLOAT, TensorShape({1, input_image.height(), input_image.width(), 3}));
PreprocessImage(input_image, &input_tensor);
std::vector<std::pair<std::string, Tensor>> inputs = {{"input_tensor:0", input_tensor}};
std::vector<tensorflow::Tensor> outputs;
Status status = session->Run(inputs, {"output_tensor:0"}, {}, &outputs);
if (!status.ok()) {
LOG(ERROR) << "Failed to run model: " << status;
return QImage();
}
return PostprocessOutput(outputs[0]);
}
int main() {
// 初始化TensorFlow
tensorflow::Session* session;
tensorflow::Status status = tensorflow::NewSession(tensorflow::SessionOptions(), &session);
if (!status.ok()) {
LOG(ERROR) << "Failed to create TensorFlow session: " << status;
return 1;
}
// 加载模型文件
status = LoadModel(session, "model.pb");
if (!status.ok()) {
LOG(ERROR) << "Failed to load model: " << status;
return 1;
}
// 加载图片并进行预测
QImage input_image("input.jpg");
QImage output_image = PredictImage(input_image, session);
return 0;
}
```
需要根据实际情况修改模型文件的名字和路径,以及输入图片的名字和路径。同时,也可以根据实际情况修改图片预处理和后处理的代码,以满足模型的输入和输出要求。
阅读全文