stm32f407在lcd上显示电脑图片程序

时间: 2023-06-25 11:05:53 浏览: 57
要在STM32F407微控制器上显示电脑图片,需要连接LCD显示器,并使用相应的图形库进行编程。以下是一个简单的程序,可以将电脑图片显示在LCD上: ```c #include "stm32f4xx.h" #include "stm32f4xx_rcc.h" #include "stm32f4xx_gpio.h" #include "stm32f4xx_fsmc.h" #include "stm32f4xx_dma.h" #include "stm32f4xx_dcmi.h" #include "stm32f4xx_syscfg.h" #include "stm32f4xx_exti.h" #include "stdio.h" #define LCD_FRAME_BUFFER ((uint32_t)0x60000000) void GPIO_Configuration(void); void FSMC_Configuration(void); void DCMI_Configuration(void); void DMA_Configuration(void); int main(void) { GPIO_Configuration(); FSMC_Configuration(); DCMI_Configuration(); DMA_Configuration(); while(1); } void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB | RCC_AHB1Periph_GPIOC, ENABLE); //DCMI GPIO Configuration GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4|GPIO_Pin_6|GPIO_Pin_7|GPIO_Pin_9|GPIO_Pin_10|GPIO_Pin_11|GPIO_Pin_12|GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_PinAFConfig(GPIOA, GPIO_PinSource4, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOA, GPIO_PinSource6, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOA, GPIO_PinSource7, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOA, GPIO_PinSource9, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOA, GPIO_PinSource10, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOA, GPIO_PinSource11, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOA, GPIO_PinSource12, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOA, GPIO_PinSource13, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOA, GPIO_PinSource14, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOA, GPIO_PinSource15, GPIO_AF_DCMI); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7|GPIO_Pin_8|GPIO_Pin_9|GPIO_Pin_10|GPIO_Pin_11|GPIO_Pin_12|GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_PinAFConfig(GPIOB, GPIO_PinSource2, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOB, GPIO_PinSource3, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOB, GPIO_PinSource4, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOB, GPIO_PinSource5, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOB, GPIO_PinSource6, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOB, GPIO_PinSource7, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOB, GPIO_PinSource8, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOB, GPIO_PinSource9, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOB, GPIO_PinSource10, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOB, GPIO_PinSource11, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOB, GPIO_PinSource12, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOB, GPIO_PinSource13, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOB, GPIO_PinSource14, GPIO_AF_DCMI); GPIO_PinAFConfig(GPIOB, GPIO_PinSource15, GPIO_AF_DCMI); //FSMC GPIO Configuration GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7|GPIO_Pin_8|GPIO_Pin_9|GPIO_Pin_10|GPIO_Pin_11|GPIO_Pin_12|GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(GPIOC, &GPIO_InitStructure); GPIO_PinAFConfig(GPIOC, GPIO_PinSource0, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOC, GPIO_PinSource1, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOC, GPIO_PinSource2, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOC, GPIO_PinSource3, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOC, GPIO_PinSource4, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOC, GPIO_PinSource5, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOC, GPIO_PinSource6, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOC, GPIO_PinSource7, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOC, GPIO_PinSource8, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOC, GPIO_PinSource9, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOC, GPIO_PinSource10, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOC, GPIO_PinSource11, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOC, GPIO_PinSource12, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOC, GPIO_PinSource13, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOC, GPIO_PinSource14, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOC, GPIO_PinSource15, GPIO_AF_FSMC); } void FSMC_Configuration(void) { FSMC_NORSRAMInitTypeDef FSMC_NORSRAMInitStructure; FSMC_NORSRAMTimingInitTypeDef p; RCC_AHB3PeriphClockCmd(RCC_AHB3Periph_FSMC, ENABLE); p.FSMC_AddressSetupTime = 0x01; p.FSMC_AddressHoldTime = 0x00; p.FSMC_DataSetupTime = 0x0f; p.FSMC_BusTurnAroundDuration = 0x00; p.FSMC_CLKDivision = 0x00; p.FSMC_DataLatency = 0x00; p.FSMC_AccessMode = FSMC_AccessMode_A; FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM1; FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Disable; FSMC_NORSRAMInitStructure.FSMC_MemoryType = FSMC_MemoryType_SRAM; FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b; FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable; FSMC_NORSRAMInitStructure.FSMC_AsynchronousWait = FSMC_AsynchronousWait_Disable; FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low; FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable; FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState; FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable; FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable; FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Disable; FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable; FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &p; FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &p; FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure); FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM1, ENABLE); } void DCMI_Configuration(void) { DCMI_InitTypeDef DCMI_InitStructure; RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_DCMI, ENABLE); DCMI_InitStructure.DCMI_CaptureMode = DCMI_CaptureMode_SnapShot; DCMI_InitStructure.DCMI_SynchroMode = DCMI_SynchroMode_Hardware; DCMI_InitStructure.DCMI_PCKPolarity = DCMI_PCKPolarity_Rising; DCMI_InitStructure.DCMI_VSPolarity = DCMI_VSPolarity_High; DCMI_InitStructure.DCMI_HSPolarity = DCMI_HSPolarity_Low; DCMI_InitStructure.DCMI_CaptureRate = DCMI_CaptureRate_All_Frame; DCMI_InitStructure.DCMI_ExtendedDataMode = DCMI_ExtendedDataMode_8b; DCMI_Init(&DCMI_InitStructure); DCMI_ITConfig(DCMI_IT_FRAME,ENABLE); NVIC_EnableIRQ(DCMI_IRQn); DCMI_CaptureCmd(ENABLE); } void DMA_Configuration(void) { DMA_InitTypeDef DMA_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE); DMA_InitStructure.DMA_Channel = DMA_Channel_1; DMA_InitStructure.DMA_PeripheralBaseAddr = 0x50050028; DMA_InitStructure.DMA_Memory0BaseAddr = LCD_FRAME_BUFFER; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; DMA_InitStructure.DMA_BufferSize = 480*272*2/4; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh; DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Enable; DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_Full; DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; DMA_Init(DMA2_Stream1, &DMA_InitStructure); DMA_Cmd(DMA2_Stream1, ENABLE); } void DCMI_IRQHandler(void) { if(DCMI_GetITStatus(DCMI_IT_FRAME) != RESET) { DMA_Cmd(DMA2_Stream1, DISABLE); while(DMA_GetCmdStatus(DMA2_Stream1) != DISABLE); DMA_SetCurrDataCounter(DMA2_Stream1, 480*272*2/4); DMA_Cmd(DMA2_Stream1, ENABLE); DCMI_ClearITPendingBit(DCMI_IT_FRAME); } } ``` 这个程序使用了FSMC(外部静态存储器控制器)来控制LCD,并使用DCMI(直接相机接口)和DMA(直接存储器访问)来获取图像数据并将其传输到LCD帧缓冲区中。 在使用此程序之前,您需要确保您的LCD显示器与STM32F407微控制器正确连接,并且您已经安装了相应的图形库。此外,您需要将要显示的电脑图片转换为适当的格式,并将其加载到LCD帧缓冲区中。

相关推荐

最新推荐

recommend-type

STM32F407 RTC 配置理解与总结

"STM32F407 RTC 配置理解与总结" 本文将对STM32F407的RTC配置进行详细的理解和总结,从基本概念到实际应用,帮助读者深入了解STM32F407的RTC配置。 RTC 概念 RTC(Real-Time Clock)是单片机中的一种时钟模块,...
recommend-type

STM32单片机驱动LCD1602液晶程序

最近看到网上很多人都在找STM32单片机驱动LCD1602液晶程序,有的人写的比较复杂刚好自己最近也在搞STM32单片机。就花了点时间写出一份仅供参考和学习。单片机IO驱动能力弱这里用的是10K上拉电阻,也可以采用74HC245...
recommend-type

正点原子STM32F407 FreeRTOS开发.pdf

正点原子STM32F407 FreeRTOS开发手册_V1.1版本,详细介绍FreeRTOS嵌入STM32F407。
recommend-type

STM32 MCU上的LCD-TFT显示控制器(LTDC).pdf

STM32系列的某些型号,如STM32F75xxx、STM32F74xxx、STM32F76xxx、STM32F77xxx、STM32F469xx、STM32F479xx以及STM32F405/415、STM32F407/417、STM32F427/437、STM32F429/439等,都配备了这一功能强大的外设。...
recommend-type

用Proteus8.9自带STM32F401VE的Controller仿真STM32F407ZGT6,F429IGT6

一, 目前得到的 Proteus8.9版本软件能够支持的...但STM32F401VE的固件库基于Cortex-M4,笔者就想利用Proteus8.9版本软件现有的STM32F401VE的固件库,对F407,F429系列芯片通过Proteus VSM Studio进行仿真实验应用。
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。