self_fun = @(x) (2.*x.*x-3*x+4+sin(x) +exp(x));deri = @(x) (4*x-3+cos(x) +exp(x));deri_1 = @(f,x,h) ((f(x+h)-f(x)) ./h);x = 0:0.1:1;x = x';y = deri(x);h0 = 0.001;y1 = deri_1(self_fun,x,h0);y2 = deri_2(self_fun,x,h0);plot(x,abs(y1-y),'-ro',x,abs(y2-y),'--b*');legend('error of deri 1','error of deri_2')xlabel('x (Step h is set as 0.001)');ylabel('Error of deriviation approximate functions');x0 = 0;d = [(2):(1):(14)]';h = 10.^(-d);yy = deri(x0)*ones(size(d));yy1 = deri_1(self_fun,x0,h);yy2 = deri_2(self_fun,x0,h);figure;plot(d,abs(yy1-yy),'-ro');legend('error of deri. 1');xlabel('Step h (at the point of x=0)');ylabel('Error of deriviation approximate function');此代码第一行明明已经定义了self_fun函数,但在octave运行中还是显示self_fun undefined,能解释并修改代码吗

时间: 2023-08-02 18:10:29 浏览: 61
根据你提供的代码,出现错误的原因是因为 `deri_2` 函数中引用了一个未定义的函数 `deri_1`。因此,你需要先定义 `deri_1` 函数,然后再运行 `deri_2` 函数。 你可以将 `deri_1` 函数定义如下: ``` deri_1 = @(f,x,h) ((f(x+h)-f(x)) ./h); ``` 然后,你将 `deri_2` 函数修改为以下代码: ``` deri_2 = @(f,x,h) ((f(x+2*h)-2*f(x+h)+f(x)) ./(h.^2)); ``` 这样就可以正常运行代码了。
相关问题

优化这段import numpy as np import matplotlib.pyplot as plt %config InlineBackend.figure_format='retina' def generate_signal(t_vec, A, phi, noise, freq): Omega = 2*np.pi*freq return A * np.sin(Omega*t_vec + phi) + noise * (2*np.random.random def lock_in_measurement(signal, t_vec, ref_freq): Omega = 2*np.pi*ref_freq ref_0 = 2*np.sin(Omega*t_vec) ref_1 = 2*np.cos(Omega*t_vec) # signal_0 = signal * ref_0 signal_1 = signal * ref_1 # X = np.mean(signal_0) Y = np.mean(signal_1) # A = np.sqrt(X**2+Y**2) phi = np.arctan2(Y,X) print("A=", A, "phi=", phi) # t_vec = np.linspace(0, 0.2, 1001) A = 1 phi = np.pi noise = 0.2 ref_freq = 17.77777 # signal = generate_signal(t_vec, A, phi, noise, ref_freq) # lock_in_measurement(signal, t_vec, ref_freq)

你可以优化这段代码的一些地方。首先,你可以将import语放在代码的开,这样可以更清晰地看到你使用了哪些库。其次,你可以将生成信号和锁相测量的函数封装到一个类中,这样可以更好地组织代码。最后,你可以将生成信号和锁相测量的参数作为函数的参数传递进去,而不是在函数内部硬编码。这样可以增加代码的灵活性。以下是优化后的代码示例: ```python import numpy as np import matplotlib.pyplot as plt class SignalGenerator: def __init__(self, t_vec, A, phi, noise, freq): self.t_vec = t_vec self.A = A self.phi = phi self.noise = noise self.freq = freq def generate_signal(self): Omega = 2*np.pi*self.freq return self.A * np.sin(Omega*self.t_vec + self.phi) + self.noise * (2*np.random.random) def lock_in_measurement(self, signal, ref_freq): Omega = 2*np.pi*ref_freq ref_0 = 2*np.sin(Omega*self.t_vec) ref_1 = 2*np.cos(Omega*self.t_vec) signal_0 = signal * ref_0 signal_1 = signal * ref_1 X = np.mean(signal_0) Y = np.mean(signal_1) A = np.sqrt(X**2 + Y**2) phi = np.arctan2(Y, X) print("A=", A, "phi=", phi) # 示例使用 t_vec = np.linspace(0, 0.2, 1001) A = 1 phi = np.pi noise = 0.2 ref_freq = 17.77777 generator = SignalGenerator(t_vec, A, phi, noise, ref_freq) signal = generator.generate_signal() generator.lock_in_measurement(signal, ref_freq) ``` 这样,你可以更方便地复用代码,并且可以通过修改构造函数的参数来调整生成信号和锁相测量的设置。

class TimeWindowSequence(Sequence): def __init__(self, x, y, batch_size, window_size): self.x = x self.y = y self.batch_size = batch_size self.window_size = window_size self.window_count = int(np.ceil(x.shape[0] / window_size)) def __len__(self): return int(np.ceil(self.x.shape[0] / self.batch_size)) def __getitem__(self, idx): batch_x = np.zeros((self.batch_size, self.window_size, self.x.shape[1])) batch_y = np.zeros((self.batch_size, self.y.shape[1])) for i in range(self.batch_size): j = idx * self.batch_size + i if j >= self.window_count: break window_x = self.x[j*self.window_size:(j+1)*self.window_size, :] window_y = self.y[j*self.window_size:(j+1)*self.window_size, :] batch_x[i, :window_x.shape[0], :] = window_x batch_y[i, :] = window_y[-1, :] return batch_x, batch_y出现

这段代码中似乎缺少了一个缩进,导致 `return` 语句在 `for` 循环内部。可以尝试将 `return` 语句缩进到 `for` 循环外部,如下所示: ``` class TimeWindowSequence(Sequence): def __init__(self, x, y, batch_size, window_size): self.x = x self.y = y self.batch_size = batch_size self.window_size = window_size self.window_count = int(np.ceil(x.shape[0] / window_size)) def __len__(self): return int(np.ceil(self.x.shape[0] / self.batch_size)) def __getitem__(self, idx): batch_x = np.zeros((self.batch_size, self.window_size, self.x.shape[1])) batch_y = np.zeros((self.batch_size, self.y.shape[1])) for i in range(self.batch_size): j = idx * self.batch_size + i if j >= self.window_count: break window_x = self.x[j*self.window_size:(j+1)*self.window_size, :] window_y = self.y[j*self.window_size:(j+1)*self.window_size, :] batch_x[i, :window_x.shape[0], :] = window_x batch_y[i, :] = window_y[-1, :] return batch_x, batch_y ``` 这样应该就可以解决这个问题了。

相关推荐

def __next_step(self, x, y): if not self.judge_colory: self.__history += 0 else: self.__history += 1 self.color = 1 if self.__history % 2 == 0 else 2 if self.start_ai_game: if self.ai_color == self.color: row,col = self.ai_stage(self.ai_game()[0],self.ai_game()[1]) else: col = round((x-self.__margin*2)/self.__cell_width) row = round((y-self.__margin*2)/self.__cell_width) stage_row = (y-self.__margin)-(self.__cell_width*row+self.__margin) stage_col = (x-self.__margin)-(self.__cell_width*col+self.__margin) if stage_col < stage_row: self.direct= 1 else: self.direct= 0 else: col = round((x - self.__margin * 2) / self.__cell_width) row = round((y - self.__margin * 2) / self.__cell_width) stage_row = (y - self.__margin) - (self.__cell_width * row + self.__margin) stage_col = (x - self.__margin) - (self.__cell_width * col + self.__margin) if stage_col < stage_row: self.direct = 1 else: self.direct= 0 if self.valide(row, col, self.direct): if self.__history % 4 == 0 or (self.__history + 2) % 4 == 0: self.__game_board.drew_turn(2) else: self.__game_board.drew_turn(1) self.add_logic(row, col, self.color) self.__game_board.draw_chess(row, col, self.color, self.direct) if self.judge_owner(row, col, self.color, self.direct): self.__game_board.drew_turn(self.judge_next(self.color)) for i in self.judge_owner(row, col, self.color, self.direct): x,y=self.draw_owner(i) self.__game_board.drew_owner(self.color, y, x) else: self.__game_board.drew_turn(self.color) self.judge_color(row, col, self.color, self.direct) print(self.logic_board_state) if 0 not in self.logic_board_owner: self.__game_board.pop_win(self.judge_winner())

class SpiralIterator: def init(self, source, x=810, y=500, length=None): self.source = source self.row = np.shape(self.source)[0]#第一个元素是行数 self.col = np.shape(self.source)[1]#第二个元素是列数 if length: self.length = min(length, np.size(self.source)) else: self.length = np.size(self.source) if x: self.x = x else: self.x = self.row // 2 if y: self.y = y else: self.y = self.col // 2 self.i = self.x self.j = self.y self.iteSize = 0 geo_transform = dsm_data.GetGeoTransform() self.x_origin = geo_transform[0] self.y_origin = geo_transform[3] self.pixel_width = geo_transform[1] self.pixel_height = geo_transform[5] def hasNext(self): return self.iteSize < self.length # 不能取更多值了 def get(self): if self.hasNext(): # 还能再取一个值 # 先记录当前坐标的值 —— 准备返回 i = self.i j = self.j val = self.source[i][j] # 计算下一个值的坐标 relI = self.i - self.x # 相对坐标 relJ = self.j - self.y # 相对坐标 if relJ > 0 and abs(relI) < relJ: self.i -= 1 # 上 elif relI < 0 and relJ > relI: self.j -= 1 # 左 elif relJ < 0 and abs(relJ) > relI: self.i += 1 # 下 elif relI >= 0 and relI >= relJ: self.j += 1 # 右 #判断索引是否在矩阵内 x = self.x_origin + (j + 0.5) * self.pixel_width y = self.y_origin + (i + 0.5) * self.pixel_height z = val self.iteSize += 1 return x, y, z dsm_path = 'C:\sanwei\jianmo\Productions\Production_2\Production_2_DSM_part_2_2.tif' dsm_data = gdal.Open(dsm_path) dsm_array = dsm_data.ReadAsArray() spiral_iterator = SpiralIterator(dsm_array,x=810,y=500) while spiral_iterator.hasNext(): x, y, z = spiral_iterator.get() print(f'Value at ({x},{y}):{z}')这段代码怎么改可以将地面点坐标反算其原始航片对应的像素行列号

最新推荐

recommend-type

grpcio-1.47.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

小程序项目源码-美容预约小程序.zip

小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序v
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步