(SICC-CGL) D:\chatglm\chatglm-6b-main\ptuning>bash train.sh Traceback (most recent call last): File "/mnt/d/chatglm/chatglm-6b-main/ptuning/main.py", line 26, in <module> import numpy as np ModuleNotFoundError: No module named 'numpy'

时间: 2024-04-11 21:28:07 浏览: 353

这个错误提示表明在你运行的脚本中缺少了名为 'numpy' 的 Python 模块。

要解决这个问题,你需要安装 numpy 模块。可以通过以下步骤来安装:

  1. 打开终端或命令提示符。

  2. 输入以下命令来安装 numpy:

    pip install numpy
    

    如果你使用的是 Python3,请使用以下命令:

    pip3 install numpy
    
  3. 等待安装完成。一旦安装成功,你就可以重新运行 train.sh 脚本了。

请注意,在安装 numpy 之前,确保你已经正确地安装了 Python 和 pip(Python 的包管理工具)。

希望这能够解决你的问题。如果还有其他疑问,请随时提问。

相关问题

File "C:\Users\SICC\.conda\envs\SICC-CGL\lib\site-packages\streamlit\runtime\scriptrunner\script_runner.py", line 552, in _run_script exec(code, module.__dict__) File "D:\chatglm\chatglm-6b-main\web_demo2.py", line 79, in <module> st.session_state["state"] = predict(prompt_text, 4096, 1.0, 1.0, st.session_state["state"]) File "D:\chatglm\chatglm-6b-main\web_demo2.py", line 37, in predict user_avatar = symbol_map["user"]

根据您提供的错误信息,看起来问题出现在您的代码中的第37行。具体来说,这里似乎出现了一个KeyError,表示在symbol_map字典中找不到"user"键。

请确保在您的代码中正确定义并初始化了symbol_map字典,并且确保键"user"存在于该字典中。您可以使用以下代码作为参考:

symbol_map = {
    "user": "👤",
    "bot": "🤖"
}

如果问题仍然存在,请检查您的代码逻辑和变量名称,确保没有其他地方导致了键错误。

如果您仍然遇到困难,请提供更多相关的代码片段和错误信息,以便我能够更好地帮助您解决问题。

OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like THUDM/chatglm-6b is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. Traceback: File "C:\Users\SICC\AppData\Roaming\Python\Python310\site-packages\streamlit\runtime\scriptrunner\script_runner.py", line 552, in _run_script exec(code, module.__dict__) File "D:\chatglm\chatglm-6b\web_demos.py", line 77, in <module> st.session_state["state"] = predict(prompt_text, 4096, 1.0, 1.0, st.session_state["state"]) File "D:\chatglm\chatglm-6b\web_demos.py", line 40, in predict tokenizer, model = get_model() File "D:\chatglm\chatglm-6b\web_demos.py", line 31, in get_model tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) File "C:\Users\SICC\.conda\envs\SICC-CGL\lib\site-packages\transformers\models\auto\tokenization_auto.py", line 634, in from_pretrained config = AutoConfig.from_pretrained( File "C:\Users\SICC\.conda\envs\SICC-CGL\lib\site-packages\transformers\models\auto\configuration_auto.py", line 896, in from_pretrained config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) File "C:\Users\SICC\.conda\envs\SICC-CGL\lib\site-packages\transformers\configuration_utils.py", line 573, in get_config_dict config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File "C:\Users\SICC\.conda\envs\SICC-CGL\lib\site-packages\transformers\configuration_utils.py", line 628, in _get_config_dict resolved_config_file = cached_file( File "C:\Users\SICC\.conda\envs\SICC-CGL\lib\site-packages\transformers\utils\hub.py", line 443, in cached_file raise EnvironmentError(

这个错误是由于无法连接到Hugging Face的服务器来加载模型文件所致。可能是因为你的网络连接有问题,或者模型文件在缓存中不存在。另外,根据错误信息看起来你使用了一个不正确的模型路径。请确保你提供的模型路径是正确的,并且你的网络连接正常。你可以检查一下网络连接,或者参考Hugging Face的文档了解如何在离线模式下运行库。

向AI提问 loading 发送消息图标

相关推荐

OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like THUDM/chatglm-6b is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. Traceback: File "C:\Users\SICC\AppData\Roaming\Python\Python310\site-packages\streamlit\runtime\scriptrunner\script_runner.py", line 552, in _run_script exec(code, module.__dict__) File "D:\chatglm\chatglm-6b\web_demos.py", line 78, in <module> st.session_state["state"] = predict(prompt_text, 4096, 1.0, 1.0, st.session_state["state"]) File "D:\chatglm\chatglm-6b\web_demos.py", line 41, in predict tokenizer, model = get_model() File "C:\Users\SICC\AppData\Roaming\Python\Python310\site-packages\streamlit\runtime\caching\cache_utils.py", line 211, in wrapper return cached_func(*args, **kwargs) File "C:\Users\SICC\AppData\Roaming\Python\Python310\site-packages\streamlit\runtime\caching\cache_utils.py", line 240, in __call__ return self._get_or_create_cached_value(args, kwargs) File "C:\Users\SICC\AppData\Roaming\Python\Python310\site-packages\streamlit\runtime\caching\cache_utils.py", line 266, in _get_or_create_cached_value return self._handle_cache_miss(cache, value_key, func_args, func_kwargs) File "C:\Users\SICC\AppData\Roaming\Python\Python310\site-packages\streamlit\runtime\caching\cache_utils.py", line 320, in _handle_cache_miss computed_value = self._info.func(*func_args, **func_kwargs) File "D:\chatglm\chatglm-6b\web_demos.py", line 31, in get_model tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) File "C:\Users\SICC\.conda\envs\SICC-CGL\lib\site-packages\transformers\models\auto\tokenization_auto.py", line 634, in from_pretrained config = AutoConfig.from_pretrained( File "C:\Users\SICC\.conda\envs\SICC-CGL\lib\site-packages\transformers\models\auto\configuration_auto.py", line 896, in from_pretrained config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) File "C:\Users\SICC\.conda\envs\SICC-CGL\lib\site-packages\transformers\configuration_utils.py", line 573, in get_config_dict config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File "C:\Users\SICC\.conda\envs\SICC-CGL\lib\site-packages\transformers\configuration_utils.py", line 628, in _get_config_dict resolved_config_file = cached_file( File "C:\Users\SICC\.conda\envs\SICC-CGL\lib\site-packages\transformers\utils\hub.py", line 443, in cached_file raise EnvironmentError(

大家在看

recommend-type

RPTRead(fname):从 *.rpt 文件读取数据-matlab开发

函数 [d,t,dline,tline]=RPTRead(fname) % 功能: % % 从包含文本和数据的 *.rpt 文件中读取数据% % 信息。内容示例如下: % % **************************************************** ********************** % % * 节点位置报告 * % % **************************************************** ********************** % % 节点位置% % Node ID Coord 1 Value Coord 2 Value Coord 3 Value Reference CID % 0.000000 0.000000 0.000000(全局)矩形% % 4 -0.621540 24.922939
recommend-type

著名的强化学习算法 Proximal Policy Optimization 的另一种自定义实现,也称为 PPO

著名的强化学习算法 Proximal Policy Optimization 的另一种自定义实现,也称为 PPO
recommend-type

基于MATLAB的光栅衍射实验仿真与研究

以光栅衍射为例 , 编写了基于 Matlab 的仿真程序 。 利用 DLL 接口技术 , 结合 Matlab 强大的科学计算功能以及 Visual Basic 的可视化功能 , 通过改变输入参数实现了对光栅衍射 、 单缝衍射 、 杨氏双缝干涉以及多光束干涉的光学实 验进行 生动形象的仿真模拟 。 实验结果的图样细致逼真 , 可为 光 学 的 理 论 分 析 和 实 验 教 学 提 供 新 的 有 效 辅 助 手 段 , 并 为 相 关 课 件 的设计提供了新的途径
recommend-type

ISO 15622 2018 Adaptive cruise control systems (ACC).pdf

自适应巡航系统最新国际标准,适合智能驾驶及ADAS相关研究人员及工程师。
recommend-type

Data Structure and Algorithm in Java (English Version)

数据结构与算法分析:Java语言描述(英文原版)(第二版)

最新推荐

recommend-type

计算机术语.pdf

计算机术语.pdf
recommend-type

包括缺陷和有限视场效应的Etalon模型 matlab代码.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

基于PLC和组态软件的智能停车场收费系统:电气控制与梯形图程序详解

内容概要:本文详细介绍了基于PLC(可编程逻辑控制器)和组态软件的智能停车场收费系统的实现方法和技术细节。首先,文章概述了系统的总体架构,指出PLC用于控制停车场的电气设备,而组态软件则提供直观的操作界面。接着,深入解析了PLC梯形图程序的具体逻辑,包括车辆检测、闸门控制、收费计算等功能模块。此外,文章还讨论了接线图的设计原则和注意事项,如防止电磁干扰、确保系统稳定性的措施。最后,介绍了组态画面的设计思路及其优化方法,如动态显示车位状态、实时更新收费信息等。通过这些内容,读者能够全面了解智能停车场收费系统的内部运作机制。 适合人群:从事自动化控制、工业物联网、智能交通等领域的工作技术人员,尤其是对PLC编程和组态软件应用感兴趣的工程师。 使用场景及目标:适用于新建或改造停车场项目的规划与实施阶段,帮助工程师理解和设计类似的自动化控制系统,提高停车场管理效率和服务质量。 其他说明:文中提供了大量实际案例和技术细节,有助于读者更好地掌握相关技术和应对实际工程中的挑战。
recommend-type

MATLAB实现电-气-热综合能源系统耦合优化调度模型

内容概要:本文详细介绍了利用MATLAB及其工具箱YALMIP和求解器CPLEX/Gurobi构建电-气-热综合能源系统耦合优化调度模型的方法。首先,文章描述了电网部分采用39节点系统进行直流潮流建模,气网部分则使用比利时20节点配气网,并对Weymouth方程进行了线性化处理,将非线性问题转化为线性规划问题。热网部分引入了热电联产(CHP)和电转气(P2G)设备,实现了热电耦合。通过模块化设计,代码能够灵活地添加新的能量存储或转换设备。实验结果显示,相比单一网络优化,三网耦合优化降低了12.6%的系统总成本,并显著改善了负荷峰谷差。 适合人群:从事能源系统优化研究的专业人士,尤其是熟悉MATLAB编程和优化理论的研究人员和技术人员。 使用场景及目标:适用于希望深入了解综合能源系统耦合优化调度机制的研究人员和技术人员。主要目标是掌握如何使用MATLAB搭建电-气-热耦合优化模型,理解各个子系统的数学建模方法以及它们之间的相互作用。 其他说明:文中提供了详细的代码片段和解释,帮助读者更好地理解和复现模型。此外,还讨论了一些实际应用中的注意事项,如求解器的选择、参数调优等。
recommend-type

Matlab智能算法实践案例集

根据给定文件信息,我们可以得出以下知识点: 1. 智能算法概述: 智能算法是利用计算机模拟人类智能行为的一系列算法。它们在问题解决过程中能够表现出学习、适应、优化和自动化的特点。智能算法广泛应用于数据挖掘、人工智能、模式识别、机器学习、自动化控制等领域。 2. MATLAB简介: MATLAB是一种高性能的数学计算和可视化软件,广泛应用于工程计算、控制设计、信号处理和通信等领域。它提供的强大的工具箱支持,使用户可以方便地进行算法开发、数据分析和可视化工作。 3. MATLAB在智能算法中的应用: 由于MATLAB拥有直观、易用的编程环境和丰富的工具箱,因此它成为了研究和实现智能算法的热门平台。MATLAB中的工具箱,如Fuzzy Logic Toolbox、Neural Network Toolbox、Genetic Algorithm and Direct Search Toolbox等,为智能算法的实现提供了便捷的途径。 4. 智能算法案例研究: 智能算法案例通常是指在某些特定问题领域中应用智能算法解决问题的过程和结果。这些案例可以帮助研究人员和工程师理解算法在实际应用中的效果,并提供解决问题的思路和方法。 5. MATLAB源码的重要性: 在智能算法的学习和研究中,源码是理解算法细节和实现机制的重要途径。阅读和分析源码可以加深对算法工作原理的理解,并可能激发对算法进行改进和创新的想法。 6. 标题“智能算法30个案例”和描述“matlab智能算法30个案例的整本书的源码”暗示了本书可能是一本关于MATLAB环境下智能算法应用的教程或者案例集。它可能按章节组织了30个不同的算法案例,并提供了相应的MATLAB源码。 7. 给定的压缩包子文件的文件名称列表(chapter28、chapter17、chapter05、chapter27、chapter12、chapter15、chapter01、chapter18、chapter21、chapter06)表示这本书被分成了多个章节,每个文件可能包含了对应章节的源码实现。通过这些文件名称,我们可以推测出书中的案例分布情况,例如: - chapter28和chapter27可能探讨了比较接近的主题或问题域,可能是高级智能算法的应用或者是某个具体问题的解决方案。 - chapter01作为第一章,可能是对MATLAB环境或智能算法基础知识的介绍,为后续更复杂的案例学习打基础。 - chapter05、chapter12、chapter15、chapter17、chapter18、chapter21等可能涉及了中间难度级别的智能算法案例,它们可能是对于特定问题的具体解决方法。 8. 标签“matlab算法”进一步强调了本书专注于MATLAB平台上的算法实现,而不仅仅是理论介绍。读者通过这本书能够获得直接在MATLAB环境中实现算法的实际操作经验。 9. 此类书籍对于学生、工程师或者研究人员在研究和应用智能算法时有较高的参考价值。通过学习这些案例,他们不仅能够学习算法的应用,还能够提高自己使用MATLAB进行算法开发的能力。 综上所述,这本书的知识点涉及智能算法的基础和应用,MATLAB工具箱的使用,以及通过实际案例学习算法实现的细节。其内容覆盖了从理论到实践的各个方面,非常适合智能算法的学习者和实践者使用。
recommend-type

【精准测试】:确保分层数据流图准确性的完整测试方法

# 摘要 分层数据流图(DFD)作为软件工程中描述系统功能和数据流动的重要工具,其测试方法论的完善是确保系统稳定性的关键。本文系统性地介绍了分层DFD的基础知识、测试策略与实践、自动化与优化方法,以及实际案例分析。文章详细阐述了测试的理论基础,包括定义、目的、分类和方法,并深入探讨了静态与动态测试方法以及测试用
recommend-type

洛谷B2084python

<think>嗯,用户需要找到洛谷平台上编号B2084的Python解题思路和代码实现。首先,我得确认这个题目的具体内容,因为用户没有提供题目描述。不过根据现有的引用信息,比如引用[4]提到了B2064斐波那契数列的题解,可能B2084属于类似的算法题,但具体题目未知。 首先,我需要查找洛谷B2084的题目内容。假设用户无法直接访问题目,可能需要通过其他途径获取信息。比如,根据编号推断,B开头的题目通常是《深入浅出》系列的练习题,可能涉及基础算法或数学问题。 由于用户提供的引用中有B2064是关于斐波那契数列的递归实现,B2084可能也是一个递归或递推问题,比如计算斐波那契数列的变种,或者
recommend-type

Laravel8Test: 探索Laravel框架的深度与资源

Laravel是一个流行的PHP Web应用程序框架,它深受开发者喜爱的原因在于其优雅的语法和对开发效率的优化。Laravel框架的设计哲学是使开发过程既愉快又富有创造性,为此它内置了许多功能来简化和加速Web应用程序的开发。 1. 后端的多种数据库支持:Laravel支持多种数据库后端,开发者可以在开发过程中选择MySQL、PostgreSQL、SQLite、SQL Server等数据库系统,这让应用程序的数据持久化更加灵活,便于适应不同的项目需求。 2. 富有表现力和直观的代码:Laravel使用MVC(模型-视图-控制器)架构模式,并提供一套直观的API来帮助开发人员构建复杂的应用程序。它的代码库旨在使应用程序的逻辑更加清晰,并允许开发者专注于业务需求而不是底层的重复性代码。 3. 数据库不可知性:Laravel的Eloquent ORM(对象关系映射)使得数据库操作更加直观和简洁,它允许开发者使用PHP代码代替传统的SQL语句来与数据库进行交互。这提高了代码的可移植性和维护性,因为数据库细节对应用程序逻辑是隐藏的。 4. 易于访问和功能强大的工具集:Laravel提供了大量内置功能,比如认证、路由、会话和缓存处理,这些都大大减少了开发工作量并提高了应用程序的性能和安全性。 5. 学习资源:Laravel拥有庞大的学习资源库,包括官方文档和社区提供的教程。Laracasts是一个专门的平台,提供了超过1500个视频教程,这些教程涵盖了Laravel框架的各个方面,以及现代PHP开发、单元测试和JavaScript。这些资源对于初学者和有经验的开发者都极其宝贵,有助于他们快速掌握框架并提高技能。 尽管在描述中未提及具体的标签,但基于标题和描述中的内容,我们可以推测这个文件是关于Laravel8的介绍、学习资源和社区赞助商的信息。由于标题中存在一些不连贯的文本(如“Laravel8Test:拉蒂汉·拉拉维尔7”),可能暗示文件名与实际内容之间存在不一致或者是一个特定版本的介绍。 从文件名称列表“Laravel8Test-master”来看,可以认为这是一个关于Laravel 8测试的项目或教程的主目录,测试是一个软件开发的关键组成部分,确保代码的质量和功能的正确性。 结合以上信息,我们可以了解到Laravel框架的主要特点,它的学习途径以及社区对它的支持。Laravel不断更新,Laravel 8作为最新版本,引入了各种新特性,包括改进的路由缓存、更好的队列工作流程以及与Laravel Sanctum(用于SPA应用的轻量级认证系统)的整合。因此,对于学习和使用Laravel的开发者来说,了解这些更新和对应的测试方法是非常重要的。
recommend-type

【版本控制】:分层数据流图的高效维护与变更管理

# 摘要 本文系统地探讨了版本控制和分层数据流图设计的重要性和应用实践。第一章强调版本控制的基础知识和其在软件开发生命周期中的关键作用。第二章详细介绍了分层数据流图的设计原理,包括基本概念、设计方法和表示技巧,以及如何通过这些图解高效地管理和沟通软件设计。第三章探讨了版本控制系统的选择与配置,比较了不同类型系统的特点,并提供了配置主流系统的实际案例。第四章重点讨论分层数据流图的变更管理流程,阐述
recommend-type

光猫有网 插上网线 电脑用不了网

<think>嗯,用户之前问过DNS服务器的问题,现在又遇到了光猫有网但插上网线电脑无法上网的情况。我需要先理清可能的原因。首先,光猫有网,说明网络服务本身没有问题,问题可能出在电脑或连接上。 用户之前的问题是关于DNS的,但这次可能不是DNS的问题。因为如果是DNS问题,用户应该能访问IP地址,但可能无法解析域名。但用户现在的情况是插上网线后完全无法上网,可能涉及到物理连接、网络配置或者光猫设置。 首先,我应该检查物理连接。网线是否插好,接口是否有松动。有时候网线损坏也会导致这个问题,可以建议用户更换网线试试。另外,光猫的LAN口是否正常工作?可能需要尝试不同的端口。 接下来是电脑的网
手机看
程序员都在用的中文IT技术交流社区

程序员都在用的中文IT技术交流社区

专业的中文 IT 技术社区,与千万技术人共成长

专业的中文 IT 技术社区,与千万技术人共成长

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

客服 返回
顶部