用java写一个opencv训练汽车识别的模型代码
时间: 2024-03-02 08:48:10 浏览: 69
OpenCv车辆识别训练模型
5星 · 资源好评率100%
下面是一个使用Java和OpenCV进行汽车识别模型训练的示例代码:
```java
import org.opencv.core.*;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.objdetect.HOGDescriptor;
import org.opencv.objdetect.Objdetect;
import org.opencv.ml.*;
import java.io.File;
import java.util.ArrayList;
import java.util.List;
public class CarDetectorTrainer {
private static final String TRAINING_POSITIVE_DIR = "positive/";
private static final String TRAINING_NEGATIVE_DIR = "negative/";
private static final String SVM_MODEL_FILE = "car_detector.xml";
private static final int WIDTH = 64;
private static final int HEIGHT = 64;
private static final int BLOCK_SIZE = 16;
private static final int BLOCK_STRIDE = 8;
private static final int CELL_SIZE = 8;
private static final int NBINS = 9;
private static final int POSITIVE_LABEL = 1;
private static final int NEGATIVE_LABEL = 0;
public static void main(String[] args) {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
List<Mat> trainingPositiveImages = loadImages(TRAINING_POSITIVE_DIR);
List<Mat> trainingNegativeImages = loadImages(TRAINING_NEGATIVE_DIR);
MatOfFloat descriptors = new MatOfFloat();
MatOfInt labels = new MatOfInt();
HOGDescriptor hog = new HOGDescriptor(new Size(WIDTH, HEIGHT), new Size(BLOCK_SIZE, BLOCK_SIZE), new Size(BLOCK_STRIDE, BLOCK_STRIDE), new Size(CELL_SIZE, CELL_SIZE), NBINS);
// 设置 SVM 分类器
SVM svm = SVM.create();
svm.setType(SVM.C_SVC);
svm.setKernel(SVM.RBF);
svm.setGamma(0.5);
svm.setC(2.0);
for (Mat image : trainingPositiveImages) {
MatOfFloat descriptor = new MatOfFloat();
hog.compute(image, descriptor);
descriptors.push_back(descriptor);
labels.push_back(new MatOfInt(POSITIVE_LABEL));
}
for (Mat image : trainingNegativeImages) {
MatOfFloat descriptor = new MatOfFloat();
hog.compute(image, descriptor);
descriptors.push_back(descriptor);
labels.push_back(new MatOfInt(NEGATIVE_LABEL));
}
// 训练 SVM 分类器
svm.train(descriptors, Ml.ROW_SAMPLE, labels);
// 保存 SVM 分类器模型
svm.save(SVM_MODEL_FILE);
}
private static List<Mat> loadImages(String directory) {
List<Mat> images = new ArrayList<>();
File dir = new File(directory);
File[] files = dir.listFiles();
if (files != null) {
for (File file : files) {
if (file.isFile()) {
Mat image = Imgcodecs.imread(file.getAbsolutePath(), Imgcodecs.IMREAD_GRAYSCALE);
images.add(image);
}
}
}
return images;
}
}
```
这个代码使用了OpenCV的HOG特征和SVM分类器来训练汽车识别模型。首先,它加载了正样本和负样本图像,并使用HOGDescriptor计算每个图像的特征向量。然后,它将这些特征向量和相应的标签(1表示正样本,0表示负样本)添加到MatOfFloat和MatOfInt对象中。最后,它使用这些特征向量和标签训练SVM分类器,并将模型保存到文件中。
要运行这个代码,你需要下载和安装OpenCV库,并将其添加到Java项目的类路径中。你还需要准备一些用于训练的正样本和负样本图像,并将它们放在相应的目录中。然后你就可以运行这个代码并等待模型训练完成。
阅读全文