帮我写一段CBAM代码
时间: 2023-07-10 09:36:52 浏览: 99
CBAM是一种用于计算机视觉中的注意力机制,可以用如下的Python代码实现:
```python
import torch
import torch.nn as nn
class CBAM(nn.Module):
def __init__(self, channels, reduction):
super(CBAM, self).__init__()
self.channels = channels
self.reduction = reduction
self.fc1 = nn.Linear(channels, channels // reduction, bias=False)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Linear(channels // reduction, channels, bias=False)
self.sigmoid_channel = nn.Sigmoid()
self.conv1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, stride=1, padding=0)
self.conv2 = nn.Conv2d(channels // reduction, channels // reduction, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(channels // reduction, 1, kernel_size=3, stride=1, padding=1)
self.sigmoid_spatial = nn.Sigmoid()
def forward(self, x):
x_channel_avg = torch.mean(x, dim=-1, keepdim=True)
x_channel_avg = torch.mean(x_channel_avg, dim=-2, keepdim=True)
x_channel_max = torch.max(x, dim=-1, keepdim=True)[0]
x_channel_max = torch.max(x_channel_max, dim=-2, keepdim=True)[0]
x_channel_att = self.fc2(self.relu(self.fc1(x_channel_avg + x_channel_max)))
x_channel_att = self.sigmoid_channel(x_channel_att)
x_spatial_att = self.conv1(x)
x_spatial_att = self.relu(x_spatial_att)
x_spatial_att = self.conv2(x_spatial_att)
x_spatial_att = self.relu(x_spatial_att)
x_spatial_att = self.conv3(x_spatial_att)
x_spatial_att = self.sigmoid_spatial(x_spatial_att)
x_att = x_channel_att * x_spatial_att
return x_att * x
```
在这段代码中,我们定义了一个`CBAM`类,继承自`nn.Module`,并定义了`__init__`和`forward`两个方法。在`__init__`方法中,我们定义了需要用到的各种网络层,包括全连接层、卷积层等。在`forward`方法中,我们首先计算通道注意力和空间注意力,然后将两个注意力相乘,得到最终的注意力特征图。最后,我们将输入特征图和注意力特征图相乘,得到CBAM后的特征图,并返回。
阅读全文