解释代码 if name=="cbam": model = cbam_resnet(num_classes=num_classes,in_channel=input_channels) print(model) return model
时间: 2024-06-01 09:09:23 浏览: 149
这是一段Python代码,它检查变量name的值是否等于"cbam",如果是,它将创建一个名为"model"的变量,并将一个cbam_resnet类的实例分配给它。该实例的num_classes参数由输入的num_classes变量指定,in_channel参数由输入的input_channels变量指定。最后,该代码将返回创建的模型。
相关问题
def spatial_attention(input_feature): kernel_size = 7 if K.image_data_format() == "channels_first": channel = input_feature._keras_shape[1] cbam_feature = Permute((2, 3, 1))(input_feature) else: channel = input_feature._keras_shape[-1] cbam_feature = input_feature avg_pool = Lambda(lambda x: K.mean(x, axis=3, keepdims=True))(cbam_feature) assert avg_pool._keras_shape[-1] == 1 max_pool = Lambda(lambda x: K.max(x, axis=3, keepdims=True))(cbam_feature) assert max_pool._keras_shape[-1] == 1 concat = Concatenate(axis=3)([avg_pool, max_pool]) assert concat._keras_shape[-1] == 2 cbam_feature = Conv2D(filters=1, kernel_size=kernel_size, strides=1, padding='same', activation='sigmoid', kernel_initializer='he_normal', use_bias=False)(concat) assert cbam_feature._keras_shape[-1] == 1 if K.image_data_format() == "channels_first": cbam_feature = Permute((3, 1, 2))(cbam_feature) return multiply([input_feature, cbam_feature]) 代码解释
这段代码实现了一个空间注意力机制(spatial attention)的函数。空间注意力机制是一种用于增强卷积神经网络(CNN)性能的技术,它能够让网络在学习特征时更加关注重要的区域,减少冗余信息的干扰。
具体来说,这个函数首先根据输入的特征图(input_feature)的格式(是“channels_first”还是“channels_last”)进行处理,并计算出一个平均池化和一个最大池化的结果。然后将这两个结果拼接在一起,通过一个卷积层得到一个注意力矩阵(cbam_feature),最后将输入的特征图和注意力矩阵相乘,得到加强后的特征图。
需要注意的是,这个函数中用到了Keras的一些函数,比如Lambda、Concatenate、Conv2D等,还用到了tensorflow的一些函数,比如mean、max等。
class EnhancedResidual(nn.Module): def init(self,in_c,out_c,fm_sz,net_type = 'ta'): super(EnhancedResidual,self).init() self.net_type = net_type self.conv1 = nn.Sequential( nn.Conv2d(in_channels = in_c,out_channels = in_c,kernel_size = 3,padding = 1), nn.BatchNorm2d(in_c), nn.ReLU(), ) self.conv2 = nn.Sequential( nn.Conv2d(in_channels = in_c,out_channels = out_c,kernel_size = 3,padding = 1), nn.BatchNorm2d(out_c), nn.ReLU(), ) self.botneck = nn.Conv2d(in_channels = in_c,out_channels = out_c,kernel_size = 1) self.pool = nn.MaxPool2d(kernel_size = 2,stride = 2) if net_type == 'ta': self.spa = SpatialAttention() self.ca = ChannelAttention(in_planes = in_c,ratio = in_c) self.sa = MultiHeadSelfAttention(in_c = in_c,out_c = in_c // 4,head_n = 4,fm_sz = fm_sz) elif net_type == 'sa': self.sa = MultiHeadSelfAttention(in_c = in_c,out_c = out_c // 4,head_n = 4,fm_sz = fm_sz) elif net_type == 'cbam': self.spa = SpatialAttention() self.ca = ChannelAttention(in_planes = in_c,ratio = in_c) def forward(self,x): x0 = self.botneck(x) x = self.conv1(x) if self.net_type == 'sa': x = self.sa(x) #x = self.conv2(x) elif self.net_type == 'cbam': x = self.ca(x) * x x = self.spa(x) * x x = self.conv2(x) elif self.net_type == 'ta': x = self.ca(x) * x x = self.spa(x) * x x = self.sa(x) x = self.conv2(x) x = x + x0 x = self.pool(x) return x 改写为tensorflow形式
import tensorflow as tf
class EnhancedResidual(tf.keras.layers.Layer):
def __init__(self, in_c, out_c, fm_sz, net_type='ta', **kwargs):
super(EnhancedResidual, self).__init__(**kwargs)
self.net_type = net_type
self.conv1 = tf.keras.Sequential([
tf.keras.layers.Conv2D(filters=in_c, kernel_size=3, padding='same'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.ReLU()
])
self.conv2 = tf.keras.Sequential([
tf.keras.layers.Conv2D(filters=out_c, kernel_size=3, padding='same'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.ReLU(),
])
self.botneck = tf.keras.layers.Conv2D(filters=out_c, kernel_size=1)
self.pool = tf.keras.layers.MaxPool2D(pool_size=2, strides=2)
if net_type == 'ta':
self.spa = SpatialAttention()
self.ca = ChannelAttention(in_planes=in_c, ratio=in_c)
self.sa = MultiHeadSelfAttention(in_c=in_c, out_c=in_c // 4, head_n=4, fm_sz=fm_sz)
elif net_type == 'sa':
self.sa = MultiHeadSelfAttention(in_c=in_c, out_c=out_c // 4, head_n=4, fm_sz=fm_sz)
elif net_type == 'cbam':
self.spa = SpatialAttention()
self.ca = ChannelAttention(in_planes=in_c, ratio=in_c)
def call(self, x):
x0 = self.botneck(x)
x = self.conv1(x)
if self.net_type == 'sa':
x = self.sa(x)
# x = self.conv2(x)
elif self.net_type == 'cbam':
x = self.ca(x) * x
x = self.spa(x) * x
x = self.conv2(x)
elif self.net_type == 'ta':
x = self.ca(x) * x
x = self.spa(x) * x
x = self.sa(x)
x = self.conv2(x)
x = x + x0
x = self.pool(x)
return x
阅读全文