def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42,42,1)) conv1 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs1) bn1 = layers.BatchNormalization()(conv1) pool1 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn1) do1 = layers.Dropout(0.3)(pool1) # channel 2 inputs2 = layers.Input(shape=(42,42,1)) conv2 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs2) bn2 = layers.BatchNormalization()(conv2) pool2 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn2) do2 = layers.Dropout(0.3)(pool2) # channel 3 inputs3 = layers.Input(shape=(42,42,1)) conv3 = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs3) bn3 = layers.BatchNormalization()(conv3) pool3 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn3) do3 = layers.Dropout(0.3)(pool3) # merge 1 merged = layers.Concatenate()([do1, do2, do3]) # interpretation 1 merged_conv = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.1))(merged) merged_pool = layers.MaxPooling2D(pool_size=(2, 2), padding='same', strides=(2,2))(merged_conv) flat = layers.Flatten()(merged_pool) flat_do = layers.Dropout(0.2)(flat) # outputs outputs = layers.Dense(1, activation='linear', name='spot')(flat_do) #Takes input u, v, os model = keras.models.Model(inputs=[inputs1, inputs2, inputs3], outputs=[outputs]) model.compile( loss={'spot':'mse'}, optimizer=opt, metrics={'spot':tf.keras.metrics.MeanAbsoluteError()}, ) return model 如何引入CBAM-ResNet
时间: 2023-08-30 16:06:53 浏览: 85
要引入CBAM-ResNet,你需要先定义CBAM模块,然后将其添加到ResNet的每个残差块中。以下是一个示例:
```
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, Add, Input, Dense, GlobalAveragePooling2D, Reshape, multiply
def cbam_block(cbam_feature, ratio=8):
# channel attention
cbam_feature_gap = GlobalAveragePooling2D()(cbam_feature)
cbam_feature_gap = Reshape((1, 1, cbam_feature.shape[-1]))(cbam_feature_gap)
cbam_feature_fc1 = Dense(cbam_feature.shape[-1] // ratio, kernel_initializer='he_normal', activation='relu', use_bias=True, bias_initializer='zeros')(cbam_feature_gap)
cbam_feature_fc2 = Dense(cbam_feature.shape[-1], kernel_initializer='he_normal', use_bias=True, bias_initializer='zeros')(cbam_feature_fc1)
cbam_feature_attention = Activation('sigmoid')(cbam_feature_fc2)
cbam_feature_attention = Reshape((1, 1, cbam_feature.shape[-1]))(cbam_feature_attention)
cbam_feature = multiply([cbam_feature, cbam_feature_attention])
# spatial attention
cbam_feature_max = tf.keras.layers.MaxPooling2D(pool_size=(cbam_feature.shape[1], cbam_feature.shape[2]))(cbam_feature)
cbam_feature_avg = tf.keras.layers.AveragePooling2D(pool_size=(cbam_feature.shape[1], cbam_feature.shape[2]))(cbam_feature)
cbam_feature_max = Conv2D(1, kernel_size=1, strides=1, kernel_initializer='he_normal')(cbam_feature_max)
cbam_feature_avg = Conv2D(1, kernel_size=1, strides=1, kernel_initializer='he_normal')(cbam_feature_avg)
cbam_feature_attention = Activation('sigmoid')(cbam_feature_max + cbam_feature_avg)
cbam_feature = multiply([cbam_feature, cbam_feature_attention])
return cbam_feature
def conv_block(input_tensor, filters, kernel_size, strides, padding='same', use_bias=False, name=None):
x = Conv2D(filters, kernel_size, strides=strides, padding=padding, use_bias=use_bias, kernel_initializer='he_normal', name=name)(input_tensor)
x = BatchNormalization()(x)
x = Activation('relu')(x)
return x
def res_block(input_tensor, filters, strides, use_cbam=True):
x = conv_block(input_tensor, filters, 3, strides)
x = conv_block(x, filters, 3, 1)
if use_cbam:
x = cbam_block(x)
shortcut = conv_block(input_tensor, filters, 1, strides)
x = Add()([x, shortcut])
x = Activation('relu')(x)
return x
def CBAM_ResNet(input_shape, num_classes, use_cbam=True):
# input
input_tensor = Input(shape=input_shape)
# conv1
x = conv_block(input_tensor, 64, 7, 2)
# conv2_x
x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')(x)
x = res_block(x, 64, strides=1, use_cbam=use_cbam)
x = res_block(x, 64, strides=1, use_cbam=use_cbam)
x = res_block(x, 64, strides=1, use_cbam=use_cbam)
# conv3_x
x = res_block(x, 128, strides=2, use_cbam=use_cbam)
x = res_block(x, 128, strides=1, use_cbam=use_cbam)
x = res_block(x, 128, strides=1, use_cbam=use_cbam)
x = res_block(x, 128, strides=1, use_cbam=use_cbam)
# conv4_x
x = res_block(x, 256, strides=2, use_cbam=use_cbam)
x = res_block(x, 256, strides=1, use_cbam=use_cbam)
x = res_block(x, 256, strides=1, use_cbam=use_cbam)
x = res_block(x, 256, strides=1, use_cbam=use_cbam)
x = res_block(x, 256, strides=1, use_cbam=use_cbam)
x = res_block(x, 256, strides=1, use_cbam=use_cbam)
# conv5_x
x = res_block(x, 512, strides=2, use_cbam=use_cbam)
x = res_block(x, 512, strides=1, use_cbam=use_cbam)
x = res_block(x, 512, strides=1, use_cbam=use_cbam)
# output
x = GlobalAveragePooling2D()(x)
output_tensor = Dense(num_classes, activation='softmax')(x)
# model
model = Model(input_tensor, output_tensor)
return model
```
在上面的代码中,我们定义了一个`cbam_block`函数来创建CBAM模块,然后使用`res_block`函数来创建ResNet的每个残差块,并在每个残差块中添加CBAM模块(如果`use_cbam`为True)。最后,我们使用`CBAM_ResNet`函数来创建完整的CBAM-ResNet模型。
阅读全文