void construct_input(char* input) { int enc[] = {65, 192, 124, 229, 151, 36, 175, 112, 235, 157, 6, 161, 95, 250, 97, 27, 178, 42, 213, 56}; unsigned char iv = 0x33; for (int i = 0; i < 20; i++) { input[i] = enc[i] ^ iv; iv = input[i] + iv; } }给我这段函数的python写法

时间: 2023-09-24 17:11:47 浏览: 57
以下是 `construct_input` 函数的 Python 实现: ```python def construct_input(input): enc = [65, 192, 124, 229, 151, 36, 175, 112, 235, 157, 6, 161, 95, 250, 97, 27, 178, 42, 213, 56] iv = 0x33 for i in range(20): input[i] = chr(enc[i] ^ iv) iv = ord(input[i]) + iv ``` 在 Python 中,字符类型是 `str` 类型,而不是 C 语言中的 `char` 类型。因此,在 Python 中,我们需要使用 `chr()` 函数将整数转换成对应的字符,使用 `ord()` 函数将字符转换成对应的整数。在循环中,我们依次计算每个字符的值,并将其赋值给 `input` 数组中相应的位置。
相关问题

function [score_S, score_U] = test_V_GZSL(V, Sim_S, Sim_U, X) W_S = construct_W(V, Sim_S); W_U = construct_W(V, Sim_U); score_S = X * W_S'; score_U = X * W_U'; end

这段代码是一个测试函数 test_V_GZSL 的实现。它接受参数 V、Sim_S、Sim_U 和 X,并返回两个分数矩阵 score_S 和 score_U。 首先,通过调用 construct_W(V, Sim_S) 构建权重矩阵 W_S。构建 W_S 的具体实现可能在代码的其他部分。 然后,计算 X 与 W_S 的乘积,即 score_S = X * W_S'。其中,X 是输入数据矩阵,W_S' 是 W_S 的转置。 接下来,通过调用 construct_W(V, Sim_U) 构建权重矩阵 W_U。构建 W_U 的具体实现可能在代码的其他部分。 然后,计算 X 与 W_U 的乘积,即 score_U = X * W_U'。其中,X 是输入数据矩阵,W_U' 是 W_U 的转置。 最后,将分数矩阵 score_S 和 score_U 返回给调用者。 请注意,这是对给定代码片段的解释,如果有其他函数或变量定义,请提供更多上下文。

本关任务:实现 constructtree.cpp 里的tnode* inpretotree(char *pa, char *ia, int p1, int p2, int i1, int i2)函数。

### 回答1: 本关任务是实现 constructtree.cpp 文件中的 inpretotree 函数,该函数的作用是将前序遍历序列和中序遍历序列构建成一棵二叉树。函数的参数包括前序遍历序列 pa,中序遍历序列 ia,以及前序遍历序列和中序遍历序列的起始和结束位置 p1、p2、i1、i2。 ### 回答2: 首先,我们来了解一下这个函数的作用和参数含义。该函数的作用是将前序遍历(pa)和中序遍历(ia)拼接为一棵二叉树。其中,pa和ia分别是存储前序遍历和中序遍历结果的字符数组,p1、p2、i1和i2则分别是表示pa和ia的起始和结束位置的指针。该函数的返回值为指向新建二叉树的根节点的指针。 在实现这个函数之前,我们需要明确一些概念。二叉树每个节点上的数字在前序、中序和后序遍历中的出现顺序是不同的,我们需要根据这个顺序建立二叉树。如果只有前序或中序遍历,我们是无法还原二叉树的,需要同时拥有前序和中序才行。 其次,需要明确一个递归的思路。我们将问题的规模不断缩小,直到只剩下一个节点可以直接返回。对于更大的规模,我们可以通过递归分解成多个小规模,在最后一步将它们组合成一个树。 在本函数中,我们可以通过前序遍历确定二叉树的根节点,在中序遍历中找到根节点的位置,从而分别构建左子树和右子树。我们可以通过p1和p2指针来确定当前递归处理的前序遍历区间,在递归处理左子树和右子树时,将这个区间的指针向左或向右移动即可。 具体实现时,我们先通过pa[p1]找到当前子树的根节点,然后在ia数组中遍历查找该节点,找到该节点后,就可以知道当前节点的左右子树的大小,从而分别递归处理左右子树。我们可以通过pa数组中的p1、p2指针改变处理区间,在递归处理左右子树时将这个指针向左或向右移动,直到处理完整个数组。 最后,需要注意一些边界问题,如处理区间为空、递归建立子树时传指针的问题等。 综上所述,实现inpretotree函数需要了解二叉树的定义和前序、中序遍历的规则,在此基础上采用递归的思路,结合前序遍历和中序遍历的特点进行节点的建立。需要仔细思考和注意边界问题,同时也需要灵活运用指针来帮助调整处理区间。 ### 回答3: 在回答这个问题之前,我们需要先了解一下二叉树和前序遍历、中序遍历的定义和特点。 二叉树是每个节点都最多有两个子节点的树结构,其中一个节点为根节点(root),其它节点分为左节点(left child)和右节点(right child)。前序遍历是从根节点开始,先遍历根节点,然后遍历所有左子树,再遍历所有右子树。中序遍历是从根节点开始,先遍历所有左子树,然后遍历根节点,再遍历所有右子树。 现在我们来看看 constructtree.cpp 中的函数 inpretotree。这个函数的目的是根据给定的前序遍历和中序遍历序列构造二叉树。参数 pa 表示前序遍历序列,ia 表示中序遍历序列,p1 和 p2 表示前序遍历序列的起始和结束位置,i1 和 i2 表示中序遍历序列的起始和结束位置。 我们可以根据前序遍历序列中的第一个节点来确定当前子树的根节点,然后在中序遍历序列中找到该节点的位置,可以得到左子树和右子树的长度。接下来,我们可以递归地构造左子树和右子树,直到子树中只有一个节点或者为空。 在具体实现函数时,可以定义一个 tnode 结构体,来保存二叉树的节点信息。首先,我们需要判断当前序列是否为空或者只有一个节点,如果是,则返回相应的节点信息。否则,我们可以根据前序序列中的第一个节点创建一个节点,并找到该节点在中序序列中的位置。接着,我们可以计算左子树和右子树的长度,建立左子树和右子树的递归调用,最终将左子树和右子树连接到当前节点上。 综上所述,对于 constructtree.cpp 中的函数 inpretotree,实现步骤如下: 1. 判断序列是否为空或者只有一个节点,是则返回相应的节点信息。 2. 根据前序序列中的第一个节点创建一个节点,并找到该节点在中序序列中的位置。 3. 计算左子树和右子树的长度。 4. 建立左子树和右子树的递归调用。 5. 将左子树和右子树连接到当前节点上。 6. 返回当前节点信息。 以上就是 inpretotree 函数的基本思路和实现方法。需要注意的是,递归实现函数时,需要设置出口条件,避免函数陷入死循环。同时,我们还需要对程序进行测试和调试,确保函数的正确性和完整性。

相关推荐

import mindspore.nn as nn import mindspore.ops.operations as P from mindspore import Model from mindspore import Tensor from mindspore import context from mindspore import dataset as ds from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.nn.metrics import Accuracy # Define the ResNet50 model class ResNet50(nn.Cell): def __init__(self, num_classes=10): super(ResNet50, self).__init__() self.resnet50 = nn.ResNet50(num_classes=num_classes) def construct(self, x): x = self.resnet50(x) return x # Load the CIFAR-10 dataset data_home = "/path/to/cifar-10/" train_data = ds.Cifar10Dataset(data_home, num_parallel_workers=8, shuffle=True) test_data = ds.Cifar10Dataset(data_home, num_parallel_workers=8, shuffle=False) # Define the hyperparameters learning_rate = 0.1 momentum = 0.9 epoch_size = 200 batch_size = 32 # Define the optimizer optimizer = nn.Momentum(filter(lambda x: x.requires_grad, resnet50.get_parameters()), learning_rate, momentum) # Define the loss function loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') # Define the model net = ResNet50() # Define the model checkpoint config_ck = CheckpointConfig(save_checkpoint_steps=1000, keep_checkpoint_max=10) ckpt_cb = ModelCheckpoint(prefix="resnet50", directory="./checkpoints/", config=config_ck) # Define the training dataset train_data = train_data.batch(batch_size, drop_remainder=True) # Define the testing dataset test_data = test_data.batch(batch_size, drop_remainder=True) # Define the model and train it model = Model(net, loss_fn=loss_fn, optimizer=optimizer, metrics={"Accuracy": Accuracy()}) model.train(epoch_size, train_data, callbacks=[ckpt_cb, LossMonitor()], dataset_sink_mode=True) # Load the trained model and test it param_dict = load_checkpoint("./checkpoints/resnet50-200_1000.ckpt") load_param_into_net(net, param_dict) model = Model(net, loss_fn=loss_fn, metrics={"Accuracy": Accuracy()}) result = model.eval(test_data) print("Accuracy: ", result["Accuracy"])这段代码有错误

void construct_finite_automaton(char* grammar) { int i, j, k, len; int num_states = 1; int state_stack[MAX_STATES], top = 0; int symbol_stack[MAX_SYMBOLS], num_symbol_stack = 0; int current_state, next_state; char symbol; // 初始化状态转移表 memset(transition_table, -1, sizeof(transition_table)); // 初始化终态和字符集 num_final_states = 0; num_symbols = 0; // 开始构造有穷自动机 len = strlen(grammar); for(i = 0; i < len; i++) { if(grammar[i] == '-') { // 左右两边分别为状态和符号 current_state = state_stack[top-1]; symbol = grammar[i+1]; next_state = num_states++; // 添加符号到字符集 add_symbol(symbol); // 添加转移 transition_table[current_state][symbol] = next_state; // 压入状态栈和符号栈 state_stack[top++] = next_state; symbol_stack[num_symbol_stack++] = symbol; } else if(grammar[i] == '|') { // 左边为状态,右边为符号 current_state = state_stack[top-1]; symbol = symbol_stack[num_symbol_stack-1]; next_state = num_states++; // 添加转移 transition_table[current_state][symbol] = next_state; // 压入状态栈 state_stack[top-1] = next_state; } else if(grammar[i] == '>') { // 左边为状态,右边为终态 current_state = state_stack[top-1]; add_final_state(current_state); } else if(grammar[i] == ' ') { // 空格表示一个新的产生式 top = 1; num_symbol_stack = 0; state_stack[0] = 0; } } // 最后一个状态是终态 add_final_state(num_states-1); // 打印状态转移表 print_transition_table(num_states); }

最新推荐

recommend-type

详解帮你彻底搞懂JS中的prototype、__proto__与constructor(图解)

主要介绍了详解帮你彻底搞懂JS中的prototype、__proto__与constructor(图解),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Python高级加密库cryptography

![【进阶】Python高级加密库cryptography](https://img-blog.csdnimg.cn/20191105183454149.jpg) # 2.1 AES加密算法 ### 2.1.1 AES加密原理 AES(高级加密标准)是一种对称块密码,由美国国家标准与技术研究院(NIST)于2001年发布。它是一种分组密码,这意味着它一次处理固定大小的数据块(通常为128位)。AES使用密钥长度为128、192或256位的迭代密码,称为Rijndael密码。 Rijndael密码基于以下基本操作: - 字节替换:将每个字节替换为S盒中的另一个字节。 - 行移位:将每一行
recommend-type

linuxjar包启动脚本

Linux中的jar包通常指的是Java Archive(Java归档文件),它是一个包含Java类、资源和其他相关文件的压缩文件。启动一个Java应用的jar包通常涉及到使用Java的Runtime或JVM(Java虚拟机)。 一个简单的Linux启动jar包的脚本(例如用bash编写)可能会类似于这样: ```bash #!/bin/bash # Java启动脚本 # 设置JAVA_HOME环境变量,指向Java安装路径 export JAVA_HOME=/path/to/your/java/jdk # jar包的路径 JAR_FILE=/path/to/your/applicat
recommend-type

Microsoft OfficeXP详解:WordXP、ExcelXP和PowerPointXP

"第四章办公自动化软件应用,重点介绍了Microsoft OfficeXP中的WordXP、ExcelXP和PowerPointXP的基本功能和应用。" 在办公自动化领域,Microsoft OfficeXP是一个不可或缺的工具,尤其对于文字处理、数据管理和演示文稿制作。该软件套装包含了多个组件,如WordXP、ExcelXP和PowerPointXP,每个组件都有其独特的功能和优势。 WordXP是OfficeXP中的核心文字处理软件,它的主要特点包括: 1. **所见即所得**:这一特性确保在屏幕上的预览效果与最终打印结果一致,包括字体、字号、颜色和表格布局等视觉元素。 2. **文字编辑**:WordXP提供基础的文字编辑功能,如选定、移动、复制和删除,同时具备自动更正和自动图文集,能即时修正输入错误,并方便存储和重复使用常用文本或图形。 3. **格式编辑**:包括字符、段落和页面的格式设置,使用户可以灵活调整文档的视觉风格,以适应不同的需求。 4. **模板、向导和样式**:模板简化了创建有固定格式文档的过程,向导引导用户完成模板填充,而样式则允许用户自定义和保存可重复使用的格式组合。 5. **图文混排**:WordXP的强大之处在于其处理图像和文本的能力,使得文档中的图片、图表和文本可以自由布局,增强了文档的表现力。 接下来,ExcelXP是电子表格软件,主要用于数据管理、计算和分析。它的主要功能包括: - 创建和编辑复杂的公式,进行数学计算和数据分析。 - 使用图表功能将数据可视化,帮助理解趋势和模式。 - 数据排序、筛选和查找功能,便于信息检索和管理。 - 表格和工作簿模板,方便用户快速生成标准格式的工作表。 最后,PowerPointXP是用于制作电子演示文稿的工具,其特性如下: - 简单易用的界面,方便用户创建引人入胜的幻灯片。 - 多样化的主题、过渡和动画效果,提升演示的视觉吸引力。 - 支持嵌入多媒体内容,如视频和音频,增强演示的交互性。 - 可以预览和控制演示流程,确保在实际展示时的流畅性。 这三款软件共同构成了OfficeXP,是办公环境中提高效率和专业性的关键工具。通过熟练掌握它们,用户可以高效地完成报告编写、数据分析和演讲准备等任务。