map50和mpa50-95
时间: 2025-01-04 19:33:22 浏览: 8
### MAP50 和 MPA50-95 的定义
MAP50(Mean Average Precision at IoU threshold of 50%)是指在目标检测任务中,当预测框与真实框之间的交并比(Intersection over Union, IoU)达到至少50%时计算得到的平均精度均值[^1]。
MPA50-95(Mean Average Precision from IoU thresholds ranging from 50% to 95%, step by 5%),则是在多个IoU阈值范围内评估模型性能的一种方式。具体来说,在这个度量标准下会考虑从50%到95%,每隔5个百分点作为一个独立的IoU阈值来分别计算AP(Average Precision),最后取这些不同阈值下的AP的平均值得到最终的结果。
### 计算方法对比
对于MAP50而言,只需要关注单个固定的IoU=0.5的情况即可完成评价过程;而MPA50-95则是综合考量了一系列不同的IoU水平上的表现情况,因此能够更加全面地反映模型在整个范围内的鲁棒性和准确性。
```python
def calculate_map_50(precision_recall_curve):
"""
Calculate the mean average precision at IOU threshold of 50%
Args:
precision_recall_curve (list): List containing tuples of (precision, recall)
Returns:
float: Mean Average Precision @ .5IOU
"""
ap = sum([p * r for p, r in precision_recall_curve]) / max(len(precision_recall_curve), 1e-6)
return ap
def calculate_mpa_50_to_95(all_precision_recall_curves):
"""
Calculate the mean average precision across multiple IOU thresholds
Args:
all_precision_recall_curves (dict): Dictionary with keys as iou_thresholds and values as lists of (precision, recall) pairs.
Returns:
float: Mean Average Precision @[.5:.05:.95]
"""
ious = [round(x*0.05,2) for x in range(10,20)]
aps = []
for iou in ious:
pr_curve = all_precision_recall_curves[iou]
ap = sum([p*r for p,r in pr_curve])/max(len(pr_curve), 1e-6)
aps.append(ap)
return sum(aps)/len(ious)
```
阅读全文