IS散度的NMF/MU算法matlab代码
时间: 2023-06-19 14:04:39 浏览: 99
易于使用且具有beta差异的NMF / NTF:非常易于使用的NMF / NTF模型实现-matlab开发
以下是基于IS散度的NMF/MU算法的Matlab代码:
```
function [W,H] = nmf_is(X,r,max_iter)
% NMF based on IS divergence
% Input:
% X: data matrix (n x m)
% r: number of basis vectors
% max_iter: maximum number of iterations
% Output:
% W: basis matrix (n x r)
% H: activation matrix (r x m)
% Reference:
% Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects
% by non-negative matrix factorization. Nature, 401(6755), 788-791.
% Initialize W and H
[n,m] = size(X);
W = rand(n,r);
H = rand(r,m);
% Calculate initial objective value
obj = sum(sum(X.*log(X./(W*H)) - X + W*H));
% Perform multiplicative updates
for iter = 1:max_iter
% Update H
H = H.*(W'*((X./(W*H)).^2))./(W'*X);
% Update W
W = W.*(((X./(W*H)).^2)*H')./(W*(H*H'));
% Calculate objective value
new_obj = sum(sum(X.*log(X./(W*H)) - X + W*H));
% Check convergence
if abs(new_obj - obj) < 1e-6
break;
end
obj = new_obj;
end
end
```
其中,`X` 是输入数据矩阵,`r` 是要分解的基向量数量, `max_iter` 是最大迭代次数。函数返回基矩阵 `W` 和激活矩阵 `H`。算法的具体实现采用了基于IS散度的NMF/MU算法,参考文献为Lee和Seung在Nature上发表的论文:Learning the parts of objects by non-negative matrix factorization。
阅读全文