class Stack: def __init__(self): self.__data = [] self.__top = -1 def push(self, item): self.__data.append(item) self.__top += 1 def pop(self): if self.isEmpty(): return None else: item = self.__data[self.__top] del self.__data[self.__top] self.__top -= 1 return item def isEmpty(self): return self.__top == -1 def getTop(self): if self.isEmpty(): return None else: return self.__data[self.__top] def getLen(self): return self.__top + 1def convert(num, base): if not isinstance(num, int) or not isinstance(base, int): return None digits = "0123456789ABCDEF" s = Stack() while num > 0: rem = num % base s.push(rem) num //= base res = "" while not s.isEmpty(): res += digits[s.pop()] return resdef test(): num = 123 base = 16 res = convert(num, base) print("The result of converting {} to base {} is: {}".format(num, base, res))test()
时间: 2024-02-14 19:36:10 浏览: 123
这段代码定义了一个栈(Stack)类,实现了栈的基本操作,包括 push、pop、isEmpty、getTop 和 getLen。同时还定义了一个 convert 函数,用于将一个十进制数转换为任意进制数。在 test 函数中调用了 convert 函数,并输出了转换结果。对于输入的 num 和 base,代码会先进行类型检查,确保两个参数均为整数类型。如果输入参数不是整数类型,则会返回 None。
以 num = 123,base = 16 为例,运行结果将会输出:The result of converting 123 to base 16 is: 7B。这表示将十进制数 123 转换为十六进制数 7B。
相关问题
class Dn_datasets(Dataset): def __init__(self, data_root, data_dict, transform, load_all=False, to_gray=False, s_factor=1, repeat_crop=1): self.data_root = data_root self.transform = transform self.load_all = load_all self.to_gray = to_gray self.repeat_crop = repeat_crop if self.load_all is False: self.data_dict = data_dict else: self.data_dict = [] for sample_info in data_dict: sample_data = Image.open('/'.join((self.data_root, sample_info['path']))).copy() if sample_data.mode in ['RGBA']: sample_data = sample_data.convert('RGB') width = sample_info['width'] height = sample_info['height'] sample = { 'data': sample_data, 'width': width, 'height': height } self.data_dict.append(sample) def __len__(self): return len(self.data_dict) def __getitem__(self, idx): sample_info = self.data_dict[idx] if self.load_all is False: sample_data = Image.open('/'.join((self.data_root, sample_info['path']))) if sample_data.mode in ['RGBA']: sample_data = sample_data.convert('RGB') else: sample_data = sample_info['data'] if self.to_gray: sample_data = sample_data.convert('L') # crop (w_start, h_start, w_end, h_end) image = sample_data target = sample_data sample = {'image': image, 'target': target} if self.repeat_crop != 1: image_stacks = [] target_stacks = [] for i in range(self.repeat_crop): sample_patch = self.transform(sample) image_stacks.append(sample_patch['image']) target_stacks.append(sample_patch['target']) return torch.stack(image_stacks), torch.stack(target_stacks) else: sample = self.transform(sample) return sample['image'], sample['target']
这段代码是用来创建一个自定义的 PyTorch 数据集类,名为 Dn_datasets。它的构造函数接受四个参数:data_root,data_dict,transform 和 load_all。其中,data_root 是数据集的根目录,data_dict 是一个字典,包含了数据集中每个样本的路径、宽度和高度等信息,transform 是一个用于数据增强的 torchvision.transforms 实例,load_all 是一个布尔值,指示是否将整个数据集加载到内存中。
在 __init__ 函数中,如果 load_all 是 False,那么 self.data_dict 直接赋值为传入的 data_dict;否则,它会遍历 data_dict 中的每个样本,将其加载到内存中,并将其图像数据、宽度和高度信息封装为一个字典,并将其存储到 self.data_dict 中。
__len__ 函数返回数据集的样本数量,__getitem__ 函数接受一个索引 idx,返回该索引对应的样本。如果 load_all 是 False,那么它会从磁盘上读取该样本的图像数据;否则,它会从 self.data_dict 中读取该样本的图像数据。如果 to_gray 是 True,那么它会将图像转换为灰度图。最后,如果 repeat_crop 大于 1,那么它会对该样本进行多次裁剪,并返回多个图像和目标对作为一个元组;否则,它会对该样本进行单次裁剪,并返回一个图像和目标对作为一个元组。
y = data['血糖']data = data.drop(columns=['血糖'])# 归一化mean = train.mean(axis=0)std = train.std(axis=0)train = (train - mean) / stdtest = (test - mean) / std# 执行PCA降维pca = PCA(n_components=10)train = pca.fit_transform(train)test = pca.transform(test)input_dim = 10 # 降维后的输入特征维度time_steps = 60output_steps = 1 # 可以预测一步,或预测多步#target_index = data.columns.tolist().index('血糖') # 待预测变量是第几个特征class MyDataset(Dataset): def __init__(self, data, label, time_steps, output_steps, target_index): # 新增label参数 self.time_steps = time_steps self.output_steps = output_steps self.target_index = target_index self.data = self.transform(data.astype(np.float32)) self.label = label # 定义self.label def transform(self, data): output = [] for i in range(data.shape[0] - self.time_steps - self.output_steps): output.append(data[i: (i + self.time_steps + self.output_steps), :]) return np.stack(output) def __getitem__(self, index): data = self.data[index, 0:self.time_steps, :] label = self.label[index + self.time_steps] # 注意,这里改为预测一步之后的标签的运算过程
这段代码定义了一个自定义数据集 MyDataset,用于将数据转换成模型输入所需的格式。它接收包括所有特征在内的数据和标签,以及时间步数 time_steps 和输出步数 output_steps,用于将数据转换成模型需要的形式。在 __init__ 函数中,将传入的数据转换成 float32 类型并进行归一化处理。在 transform 函数中,将数据按照 time_steps 和 output_steps 划分成多个小块,并将这些小块组合成一个三维数组。在 __getitem__ 函数中,根据索引获取对应的数据和标签,并将标签改为预测一步之后的标签。注意,这里的 target_index 已经不再需要了,因为目标变量已经在 data 中被删除了。
阅读全文