python调用C++

时间: 2023-07-11 19:54:37 浏览: 32
Python 可以通过 ctypes 模块、Cython、SWIG 等方式调用 C++。这里简单介绍 ctypes 模块的用法: 1. 编写 C++ 动态链接库 可以使用 C++ 编写动态链接库,将其编译为 .so(Linux)或 .dll(Windows)格式的库文件。例如,编写一个名为 add 的 C++ 函数,用于计算两个整数的和: ``` // add.cpp int add(int x, int y) { return x + y; } ``` 使用以下命令将其编译为动态链接库: ``` g++ -shared -fPIC add.cpp -o libadd.so # Linux g++ -shared -DADD_EXPORTS add.cpp -o add.dll # Windows ``` 2. 在 Python 中调用 C++ 函数 在 Python 中使用 ctypes 模块加载动态链接库,并调用其中的函数。例如,调用上述 add 函数: ``` # add.py from ctypes import cdll lib = cdll.LoadLibrary('./libadd.so') # Linux # lib = cdll.LoadLibrary('./add.dll') # Windows a = 1 b = 2 c = lib.add(a, b) print(f"{a} + {b} = {c}") ``` 运行该脚本,即可输出 1 + 2 = 3。 需要注意的是,在 Python 中调用 C++ 函数时,需要指定函数的参数类型和返回值类型。例如,如果 add 函数的返回值类型为 double 类型,可以使用如下代码调用: ``` lib.add.restype = ctypes.c_double c = lib.add(ctypes.c_double(a), ctypes.c_double(b)) ``` 类似地,如果 add 函数的参数类型为 double 类型,可以使用如下代码调用: ``` lib.add.argtypes = [ctypes.c_double, ctypes.c_double] c = lib.add(ctypes.c_double(a), ctypes.c_double(b)) ```

相关推荐

doc

最新推荐

建筑行业周观点开工和地方债发行同步提速基建增速有望企稳-11页.pdf.zip

行业报告 文件类型:PDF格式 打开方式:直接解压,无需密码

ChatGPT技术在逻辑推理中的推理准确性与逻辑合理性评估.docx

ChatGPT技术在逻辑推理中的推理准确性与逻辑合理性评估

建筑材料行业研究周报地产再迎积极政策关注地产链新材料及新疆板块-6页.pdf.zip

行业报告 文件类型:PDF格式 打开方式:直接解压,无需密码

铝行业周报旺季铝价持续上涨盈利进一步走阔-31页.pdf.zip

行业报告 文件类型:PDF格式 打开方式:直接解压,无需密码

【字符识别】基于matlab BP神经网络字符识别【含Matlab源码 1358期】.zip

CSDN海神之光上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 手写数字识别:BP神经网络手写数字识别、PCA手写数字识别、RBF手写数字识别、模板匹配手写数字识别 字母识别:BP神经网络手写字母识别、PCA手写字母识别、RBF手写字母识别、模板匹配手写字母识别

学科融合背景下“编程科学”教学活动设计与实践研究.pptx

学科融合背景下“编程科学”教学活动设计与实践研究.pptx

ELECTRA风格跨语言语言模型XLM-E预训练及性能优化

+v:mala2277获取更多论文×XLM-E:通过ELECTRA进行跨语言语言模型预训练ZewenChi,ShaohanHuangg,LiDong,ShumingMaSaksham Singhal,Payal Bajaj,XiaSong,Furu WeiMicrosoft Corporationhttps://github.com/microsoft/unilm摘要在本文中,我们介绍了ELECTRA风格的任务(克拉克等人。,2020b)到跨语言语言模型预训练。具体来说,我们提出了两个预训练任务,即多语言替换标记检测和翻译替换标记检测。此外,我们预训练模型,命名为XLM-E,在多语言和平行语料库。我们的模型在各种跨语言理解任务上的性能优于基线模型,并且计算成本更低。此外,分析表明,XLM-E倾向于获得更好的跨语言迁移性。76.676.476.276.075.875.675.475.275.0XLM-E(125K)加速130倍XLM-R+TLM(1.5M)XLM-R+TLM(1.2M)InfoXLMXLM-R+TLM(0.9M)XLM-E(90K)XLM-AlignXLM-R+TLM(0.6M)XLM-R+TLM(0.3M)XLM-E(45K)XLM-R0 20 40 60 80 100 120触发器(1e20)1介绍使�

docker持续集成的意义

Docker持续集成的意义在于可以通过自动化构建、测试和部署的方式,快速地将应用程序交付到生产环境中。Docker容器可以在任何环境中运行,因此可以确保在开发、测试和生产环境中使用相同的容器镜像,从而避免了由于环境差异导致的问题。此外,Docker还可以帮助开发人员更快地构建和测试应用程序,从而提高了开发效率。最后,Docker还可以帮助运维人员更轻松地管理和部署应用程序,从而降低了维护成本。 举个例子,假设你正在开发一个Web应用程序,并使用Docker进行持续集成。你可以使用Dockerfile定义应用程序的环境,并使用Docker Compose定义应用程序的服务。然后,你可以使用CI

红楼梦解析PPT模板:古典名著的现代解读.pptx

红楼梦解析PPT模板:古典名著的现代解读.pptx

大型语言模型应用于零镜头文本风格转换的方法简介

+v:mala2277获取更多论文一个使用大型语言模型进行任意文本样式转换的方法Emily Reif 1页 达芙妮伊波利托酒店1,2 * 袁安1 克里斯·卡利森-伯奇(Chris Callison-Burch)Jason Wei11Google Research2宾夕法尼亚大学{ereif,annyuan,andycoenen,jasonwei}@google.com{daphnei,ccb}@seas.upenn.edu摘要在本文中,我们利用大型语言模型(LM)进行零镜头文本风格转换。我们提出了一种激励方法,我们称之为增强零激发学习,它将风格迁移框架为句子重写任务,只需要自然语言的指导,而不需要模型微调或目标风格的示例。增强的零触发学习很简单,不仅在标准的风格迁移任务(如情感)上,而且在自然语言转换(如“使这个旋律成为旋律”或“插入隐喻”)上都表现出了1介绍语篇风格转换是指在保持语篇整体语义和结构的前提下,重新编写语篇,使其包含其他或替代的风格元素。虽然�