support_vec = None if choice == 4: model4.fit(x1_x2_train, t_train) pred_train = model4.predict(x1_x2_train) pred_test = model4.predict(x1_x2_test) elif choice == 1 or choice == 2: support_vec = model.train(data_train) # shape(N,1) [pred_t] pred_train = model(x1_x2_train) pred_test = model(x1_x2_test) elif choice == 3: support_vec = model3.train(data_train) pred_train = model3(x1_x2_train) pred_test = model3(x1_x2_test) else: support_vec = None pred_train = None pred_train = None。上方代码的含义是什么
时间: 2024-04-01 21:38:26 浏览: 131
这段代码的作用是训练和测试SVM模型,并获取支持向量和预测结果。如果选择为4,那么它将使用`fit()`函数训练一个sklearn的SVM分类器,并使用训练数据和测试数据生成预测结果`pred_train`和`pred_test`。如果选择为1或2,它将使用`train()`函数训练一个二元SVM分类器或一个非线性SVM分类器,并获取支持向量`support_vec`。然后,它将使用训练数据和测试数据生成预测结果`pred_train`和`pred_test`。如果选择为3,它将使用`train()`函数训练一个多分类SVM分类器,并获取支持向量`support_vec`。然后,它将使用训练数据和测试数据生成预测结果`pred_train`和`pred_test`。如果选择不是1、2、3或4,那么`support_vec`、`pred_train`和`pred_test`都将被设置为`None`。
相关问题
# extract dataset x1_x2_train = data_train[:, :-1] t_train = data_train[:, 2] # x1_x2_test = data_test[:, :-1] t_test = data_test[:, 2] if choice == 1: model = svm_bi.SVM(svm_bi.linear_kernel) elif choice == 2: #model = SVM(polynormal_kernel) model = svm_bi.SVM(svm_bi.gaussian_kernel) #model = svm_bi.SVM(svm_bi.sigmoid_kernel) elif choice == 3: model3 = svm_multi.SVM_Multi() elif choice == 4: from sklearn.svm import SVC model4 = SVC(kernel='sigmoid') else: exit() support_vec = None if choice == 4: model4.fit(x1_x2_train, t_train) pred_train = model4.predict(x1_x2_train) pred_test = model4.predict(x1_x2_test) elif choice == 1 or choice == 2: support_vec = model.train(data_train) # shape(N,1) [pred_t] pred_train = model(x1_x2_train) pred_test = model(x1_x2_test) elif choice == 3: support_vec = model3.train(data_train) pred_train = model3(x1_x2_train) pred_test = model3(x1_x2_test) else: support_vec = None pred_train = None pred_train = None,这段代码的含义是什么
这段代码主要是根据用户选择的 SVM 算法类型,建立相应的 SVM 模型,并使用训练集数据进行训练,并对训练集和测试集进行预测。
首先,根据选择的 SVM 类型,判断需要使用哪个 SVM 模型进行训练。如果选择了线性 SVM(choice=1),则使用 svm_bi.SVM(svm_bi.linear_kernel) 建立模型;如果选择了非线性 SVM(choice=2),则可以选择使用 svm_bi.SVM(svm_bi.gaussian_kernel) 或 svm_bi.SVM(svm_bi.sigmoid_kernel) 建立模型;如果选择了多分类 SVM(choice=3),则使用 svm_multi.SVM_Multi() 建立模型;如果选择了 sklearn SVM(choice=4),则使用 sklearn.svm.SVC(kernel='sigmoid') 建立模型。
然后,根据选择的 SVM 模型类型,使用训练集数据进行训练,并对训练集和测试集进行预测。如果选择的是 sklearn SVM 模型,则使用 model4.fit(x1_x2_train, t_train) 对模型进行训练,并使用 model4.predict(x1_x2_train) 和 model4.predict(x1_x2_test) 对训练集和测试集进行预测;如果选择的是 SVM(linear、gaussian 或 sigmoid kernel)模型,则使用 model.train(data_train) 对模型进行训练,并使用 model(x1_x2_train) 和 model(x1_x2_test) 对训练集和测试集进行预测。如果选择的是多分类 SVM 模型,则使用 model3.train(data_train) 对模型进行训练,并使用 model3(x1_x2_train) 和 model3(x1_x2_test) 对训练集和测试集进行预测。
最后,根据选择的 SVM 模型类型,返回预测结果 pred_train 和 pred_test,以及支持向量 support_vec。如果选择的是 SVM(linear、gaussian 或 sigmoid kernel)模型或多分类 SVM 模型,返回的支持向量 support_vec 非空,否则为空。
x = train['contents_clean'][:10000] y = train['label'][:10000] x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.2) vec = TfidfVectorizer(ngram_range=(1, 2)) ####考虑二维的特征 临近的两个特征组合 X_train_vec = vec.fit_transform(x_train) X_test_vec = vec.transform(x_test) display(X_train_vec, X_test_vec) from sklearn.feature_selection import SelectKBest X_train_vec = X_train_vec.astype(np.float32) X_test_vec = X_test_vec.astype(np.float32) selector = SelectKBest(f_classif, k=min(20000, X_train_vec.shape[1])) selector.fit(X_train_vec, y_train) X_train_vec = selector.transform(X_train_vec) X_test_vec = selector.transform(X_test_vec) print(X_train_vec.shape, X_test_vec.shape)
这段代码是一个经典的文本分类流程,具体来说:
- 首先,从 `train` 数据集中选择前 10000 条数据作为训练集,分别将文本和标签存储在 `x` 和 `y` 变量中。
- 然后,使用 `train_test_split` 函数将训练集划分为训练集和测试集,其中测试集大小为训练集大小的 20%。
- 接下来,使用 `TfidfVectorizer` 对文本进行特征提取,其中 `ngram_range=(1, 2)` 表示提取单个词和二元组合的词作为特征。文本特征提取后,将训练集和测试集的特征向量分别存储在 `X_train_vec` 和 `X_test_vec` 变量中。
- 然后,使用 `SelectKBest` 进行特征选择,选择最相关的前 20000 个特征。这里使用的是 `f_classif` 评价函数,该函数计算每个特征与目标变量之间的方差比值(ANOVA F-value)。
- 最后,将训练集和测试集的特征向量转换为经过特征选择后的特征向量,并打印出它们的形状。
这段代码的目的是为了将原始的文本数据转换为可以用于机器学习模型训练的特征向量,并选择最相关的特征,以提高模型的性能。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)