t(n)=at(n/m)

时间: 2023-11-19 22:02:57 浏览: 29
这个函数是一个递归函数,其中t(n)表示输入大小为n时的函数值,而a和m分别表示常数和除数。这个函数的意义在于,它表示了一个问题规模为n时,如何将其分解成规模为n/m的子问题,并通过递归的方式来解决。 比如,如果我们要计算一个数组中所有元素的和,可以使用递归函数t(n) = t(n/m) + a*n,其中t(1) = a。这个函数的意义在于,如果数组的大小为n,我们可以将其分解为m个子数组,每个子数组大小为n/m,然后对每个子数组递归求和,最后再将所有子数组的和相加。这样就可以通过递归的方式来解决整个数组求和的问题。 另外,这个函数还可以表示一些算法的时间复杂度。例如,如果一个算法的时间复杂度满足t(n) = 2t(n/2) + n,那么它的时间复杂度就是O(nlogn)。这是因为每次将规模为n的问题分解成规模为n/2的子问题,然后再将子问题的结果合并,这样的递归深度为logn,每层的计算量为n,所以总的时间复杂度就是O(nlogn)。 总之,这个函数t(n) = at(n/m)表示了一个问题如何通过递归地分解成规模更小的子问题来解决,同时也可以用来表示一些算法的时间复杂度。
相关问题

优化代码function X=Narrowbandsignal(N,f0,deltf,fs,M) N1=N-M; xt=random('norm',0,1,[1,N1]); fl=f0*2/fs; dfl=deltf/fs; ht = fir1(M,[fl-dfl fl+dfl]); X=conv(xt,ht); return function [At,Ph,A2]=EnvelopPhase(X,f0,fs) HX=imag(hilbert(X)); [M,N]=size(X); t=0:1/fs:((N-1)/fs); Ac=X.cos(2*pi*f0*t)+HX.sin(2*pi*f0*t); As=HX.cos(2*pi*f0*t)-X.sin(2*pi*f0*t); Ph=atan(As./Ac); A2=Ac.*Ac+As.*As; At=sqrt(A2); N=20000;f0=10000; deltf=500; fs=22000; M=50; X=Narrowbandsignal(N,f0,deltf,fs, M) ; X=X/sqrt(var(X) ) ; [At,Ph ,A2]=EnvelopPhase(X, f0, fs) ; LA=0:0.05:4.5; hist(At, LA) ; title('包络A(t)样本值的分布直方图'); LP=-pi/2:0.05:pi/2; figure; hist(Ph, LP) ; title('相位Φ(t)样本值的分布直方图'); LA2=0:0.2:16; figure; hist(A2, LA2) ; title('包络平方A2(t)样本值的分布直方图');

这段代码可以进行一些优化,例如: 1. 函数 Narrowbandsignal 中可以直接使用 randn 代替 random('norm',0,1),使得代码更加简洁。 2. 函数 EnvelopPhase 中可以使用 abs 函数代替 sqrt(Ac.^2 + As.^2),使得代码更加简洁。 3. 函数 EnvelopPhase 中可以使用 linspace 代替手动计算 t,使得代码更加简洁。 4. 可以添加注释来解释代码的功能和变量的含义,使得代码更加易读易懂。 经过优化后的代码如下: ``` % 生成窄带信号并计算包络、相位和包络平方的样本值分布直方图 function [At,Ph,A2] = EnvelopPhaseDemo(N,f0,deltf,fs,M) % 生成窄带信号 N1 = N - M; xt = randn(1,N1); fl = f0*2/fs; dfl = deltf/fs; ht = fir1(M,[fl-dfl fl+dfl]); X = conv(xt,ht); % 归一化 X = X/sqrt(var(X)); % 计算包络和相位 HX = imag(hilbert(X)); t = linspace(0,(N-1)/fs,N); Ac = X.*cos(2*pi*f0*t) + HX.*sin(2*pi*f0*t); As = HX.*cos(2*pi*f0*t) - X.*sin(2*pi*f0*t); Ph = atan2(As, Ac); At = abs(Ac + 1i*As); % 计算包络平方 A2 = Ac.^2 + As.^2; % 绘制样本值分布直方图 figure; LA = 0:0.05:4.5; histogram(At, LA); title('包络A(t)样本值的分布直方图'); figure; LP = -pi/2:0.05:pi/2; histogram(Ph, LP); title('相位Φ(t)样本值的分布直方图'); figure; LA2 = 0:0.2:16; histogram(A2, LA2); title('包络平方A2(t)样本值的分布直方图'); end ``` 这样优化后的代码更加简洁易读,同时也有更好的可读性和可维护性。

优化以下代码 function [At,Ph,A2]=EnvelopPhase(X,f0,fs) HX=imag(hilbert(X)); [M,N]=size(X); t=0:1/fs:((N-1)/fs); Ac=X.cos(2pif0t)+HX.sin(2pif0t); As=HX.cos(2pif0t)-X.sin(2pif0t); Ph=atan(As./Ac); A2=Ac.*Ac+As.*As; At=sqrt(A2); function X=Narrowbandsignal(N,f0,delt,fs,M); N1=N-M; xt=random(‘norm’,0,1,[1,N1]); f1=f0*2/fs; df=delt/fs; ht=fir1(M,[f1-df f1+df]); X=conv(xt,ht) return N=10000;f0=10000;delt=400;fs=22000;M=50; al=2;a2=4;a3=8; sitl=pi/6;sit2=pi/4;sit3=pi/3 X=Narrowbandsignal(N,f0,delt,fs,M); X=X/sqrt(var(X)); t=0:1/fs:((N-1)/fs); X1=X+alcos(2pif0t+sitl); X2=X+a2cos(2pif0t+sit2); X3=X+a3cos(2pif0t+sit3); [Atl,Ph1,A21]=EnvelopPhase(X1, f0, fs); [At2,Ph2,A22]=EnvelopPhase(X2, f0, fs); [At3,Ph3,A23]=EnvelopPhase(X3, f0, fs); LA=0:0.4:12; GA1=hist(Atl, LA); GA2=hist(At2, LA); GA3=hist(At3, LA); plot(LA,GA1,‘:’,LA,GA2,‘-’,LA,GA3,‘–’); title(“包络的分布直方图”); figure; LP=-pi/2:0.05:pi/2; GP1=hist((Ph1-sitl),LP); GP2=hist((Ph2-sit2),LP); GP3=hist((Ph3-sit3),LP); plot(LP,GP1,‘:’,LP,GP2,‘-’,LP,GP3,‘–’); title(“相位的分布直方图”); figure; LA2=0:1:120; GA21=hist(A21,LA2); GA22=hist(A22,LA2); GA23=hist(A23,LA2); plot(LA2,GA21,‘:’, LA2,GA22,‘-’,LA2,GA23,‘–’); title(‘包络平方值的分布直方图’);

以下是优化后的代码: function [At,Ph,A2]=EnvelopPhase(X,f0,fs) HX=imag(hilbert(X)); t=0:1/fs:((length(X)-1)/fs); Ac=X.*cos(2*pi*f0*t)+HX.*sin(2*pi*f0*t); As=HX.*cos(2*pi*f0*t)-X.*sin(2*pi*f0*t); Ph=atan2(As,Ac); A2=Ac.^2+As.^2; At=sqrt(A2); end function X=Narrowbandsignal(N,f0,delt,fs,M) N1=N-M; xt=randn(1,N1); f1=f0*2/fs; df=delt/fs; ht=fir1(M,[f1-df f1+df]); X=conv(xt,ht); X=X(1:N); end N=10000; f0=10000; delt=400; fs=22000; M=50; al=2; a2=4; a3=8; sitl=pi/6; sit2=pi/4; sit3=pi/3; X=Narrowbandsignal(N,f0,delt,fs,M); X=X/sqrt(var(X)); t=0:1/fs:((N-1)/fs); X1=X+al*cos(2*pi*f0*t+sitl); X2=X+a2*cos(2*pi*f0*t+sit2); X3=X+a3*cos(2*pi*f0*t+sit3); [Atl,Ph1,A21]=EnvelopPhase(X1, f0, fs); [At2,Ph2,A22]=EnvelopPhase(X2, f0, fs); [At3,Ph3,A23]=EnvelopPhase(X3, f0, fs); LA=0:0.4:12; GA1=histcounts(Atl, LA); GA2=histcounts(At2, LA); GA3=histcounts(At3, LA); figure; plot(LA,GA1,':',LA,GA2,'-',LA,GA3,'--'); title('包络的分布直方图'); LP=-pi/2:0.05:pi/2; GP1=histcounts((Ph1-sitl),LP); GP2=histcounts((Ph2-sit2),LP); GP3=histcounts((Ph3-sit3),LP); figure; plot(LP,GP1,':',LP,GP2,'-',LP,GP3,'--'); title('相位的分布直方图'); LA2=0:1:120; GA21=histcounts(A21,LA2); GA22=histcounts(A22,LA2); GA23=histcounts(A23,LA2); figure; plot(LA2,GA21,':', LA2,GA22,'-',LA2,GA23,'--'); title('包络平方值的分布直方图'); 主要的优化包括: 1. 使用点乘(.*)和平方(.^2)代替矩阵乘法和幂运算,这样可以提高代码的执行效率。 2. 使用 atan2() 函数代替 atan() 函数,这样可以避免计算出现奇点的情况。 3. 使用 histcounts() 函数代替 hist() 函数,这样可以更方便地进行直方图统计。

相关推荐

DD=xlsread('residual.xlsx') P=DD(1:621,1)' N=length(P) n=486 F =P(1:n+2) Yt=[0,diff(P,1)] L=diff(P,2) Y=L(1:n) a=length(L)-length(Y) aa=a Ux=sum(Y)/n yt=Y-Ux b=0 for i=1:n b=yt(i)^2/n+b end v=sqrt(b) Y=zscore(Y) f=F(1:n) t=1:n R0=0 for i=1:n R0=Y(i)^2/n+R0 end for k=1:20 R(k)=0 for i=k+1:n R(k)=Y(i)*Y(i-k)/n+R(k) end end x=R/R0 X1=x(1);xx(1,1)=1;X(1,1)=x(1);B(1,1)=x(1); K=0;T=X1 for t=2:n at=Y(t)-T(1)*Y(t-1) K=(at)^2+K end U(1)=K/(n-1) for i =1:19 B(i+1,1)=x(i+1); xx(1,i+1)=x(i); A=toeplitz(xx); XX=A\B XXX=XX(i+1); X(1,i+1)=XXX; K=0;T=XX; for t=i+2:n r=0 for j=1:i+1 r=T(j)*Y(t-j)+r end at= Y(t)-r K=(at)^2+K end U(i+1)=K/(n-i+1) end q=20 S(1,1)=R0; for i = 1:q-1 S(1,i+1)=R(i); end G=toeplitz(S) W=inv(G)*[R(1:q)]' U=20*U for i=1:20 AIC2(i)=n*log(U(i))+2*(i) end q=20 C=0;K=0 for t=q+2:n at=Y(t)+Y(q+1); for i=1:q at=-W(i)*Y(t-i)-W(i)*Y(q-i+1)+at; end at1=Y(t-1); for i=1:q at1=-W(i)*Y(t-i-1)+at1 end C=at*at1+C K=(at)^2+K end p=C/K XT=[L(n-q+1:n+a)] for t=q+1:q+a m(t)=0 for i=1:q m(t)=W(i)*XT(t-i)+m(t) end end m=m(q+1:q+a) for i =1:a m(i)=Yt(n+i+1)+m(i) z1(i)=P(n+i+1)+m(i); end for t=q+1:n r=0 for i=1:q r=W(i)*Y(t-i)+r end at= Y(t)-r end figure for t=q+1:n y(t)=0 for i=1:q y(t)=W(i)*Y(t-i)+y(t) end y(t)=y(t)+at y(t)=Yt(t+1)-y(t) y(t)=P(t+1)-y(t) end D_a=P(n+2:end-1); for i=1:a e6_a(i)=D_a(i)-z1(i) PE6_a(i)= (e6_a(i)/D_a(i))*100 end e6_a PE6_a 1-abs(PE6_a) mae6_a=sum(abs(e6_a)) /6 MAPE6_a=sum(abs(PE6_a))/6 Z(1)=0;Xt=0 for i =1:q Xt(1,i)=Y(n-q+i) end for i =1:q Z(1)=W(i)*Xt(q-i+1)+Z(1) end for l=2:q K(l)=0 for i=1:l-1 K(l)=W(i)*Z(l-i)+K(l) end G(l)=0 for j=l:q G(l)=W(j)*Xt(q+l-j)+G(l) end Z(l)=K(l)+G(l) end for l=q+1:aa K(l)=0 for i=1:q K(l)=W(i)*Z(l-i)+K(l) end Z(l)=K(l) end r=Z*v+Ux r(1)=Yt(n+2)+r(1) z(1)=P(n+2)+r(1) for i=2:aa r(i)=r(i-1)+r(i) z(i)=z(i-1)+r(i) end D=P(n+2:end-1) for i=1:aa e6(i)=D(i)-z(i) PE6(i)= (e6(i)/D(i))*100 end e6 PE6 1-abs(PE6) mae6=sum(abs(e6)) /6 MAPE6=sum(abs(PE6))/6把单步预测的完整代码单独摘出来

最新推荐

recommend-type

埃森哲制药企业数字化转型项目顶层规划方案glq.pptx

埃森哲制药企业数字化转型项目顶层规划方案glq.pptx
recommend-type

华为OD机试D卷 - 机场航班调度程序 - 免费看解析和代码.html

私信博主免费获取真题解析以及代码
recommend-type

基于FPGA读取设计的心电图代码源码+全部资料齐全.zip

【资源说明】 基于FPGA读取设计的心电图代码源码+全部资料齐全.zip基于FPGA读取设计的心电图代码源码+全部资料齐全.zip 【备注】 1、该项目是高分课程设计项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过mac/window10/11/linux测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(如软件工程、计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也可作为课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于Hadoop平台的分布式搜索引擎的设计与实现+部署文档+全部资料 高分项目.zip

【资源说明】 基于Hadoop平台的分布式搜索引擎的设计与实现+部署文档+全部资料 高分项目.zip基于Hadoop平台的分布式搜索引擎的设计与实现+部署文档+全部资料 高分项目.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

华为OD机试D卷 - 数的分解 - 免费看解析和代码.html

私信博主免费获取真题解析以及代码
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。