用QR算法求解矩阵的全部特征值
时间: 2024-06-09 15:03:09 浏览: 273
QR算法是一种求解矩阵全部特征值和特征向量的迭代算法。其基本思想是通过矩阵的QR分解,将矩阵不断地迭代为一个上三角矩阵,使得其对角线上的元素逐渐收敛到特征值。具体来说,QR算法的步骤如下:
1. 对于一个n阶矩阵A,取一个n维随机向量x0,并进行单位化。
2. 对x0进行n次迭代,每次迭代都将Ax(i)表示为q(i)r(i),其中q(i)是一个正交矩阵,r(i)是一个上三角矩阵,即Ax(i)=q(i)r(i)。
3. 将r(n)与q(n)相乘得到一个新的矩阵A(n+1),即A(n+1)=r(n)q(n),它比A更接近于一个上三角矩阵。
4. 重复步骤2和步骤3,直到A(n+1)的对角线元素收敛于矩阵A的特征值。
在实际应用中,QR算法可能会出现收敛速度慢、计算量大等问题。为了解决这些问题,可以采用一些优化技术,如带位移的QR算法和双步QR算法等。
相关问题
带 Wilkinson 位移的隐式对称 QR 算法求解对称矩阵特征值matlab代码,要求使用householder三对角化
以下是使用 Householder 三对角化和带 Wilkinson 位移的隐式对称 QR 算法求解对称矩阵特征值的 Matlab 代码:
```matlab
function [eigenvalues, eigenvectors] = symmQR(A, tol)
% A: n x n 对称矩阵
% tol: 容许误差
% eigenvalues: n x 1 特征值向量
% eigenvectors: n x n 特征向量矩阵
n = size(A, 1);
eigenvalues = diag(A); % 初始化特征值向量
eigenvectors = eye(n); % 初始化特征向量矩阵
while true
for i = 1:n-1
if abs(A(i+1,i)) < tol % 判断下对角线元素是否为零
continue
end
% 计算 Householder 变换矩阵
[v, beta] = house(A(i:i+1,i));
H = blkdiag(eye(i-1), v*v'/beta, eye(n-i-1));
% 对矩阵进行 Householder 三对角化
A = H * A * H;
eigenvectors = eigenvectors * H;
% 对带 Wilkinson 位移的隐式 QR 算法进行迭代
[mu, shift] = wilkinsonShift(A(n-1:n,n-1:n));
[Q, R] = qr(A - mu*eye(n));
A = R * Q + mu*eye(n);
% 更新特征值向量
eigenvalues(i:i+1) = A(i:i+1,i:i+1);
end
% 检查是否满足停止条件
if max(abs(tril(A,-1))) < tol
break
end
end
% 对特征向量矩阵进行正交化
for i = 1:n
for j = 1:i-1
eigenvectors(:,i) = eigenvectors(:,i) - (eigenvectors(:,i)'*eigenvectors(:,j)) * eigenvectors(:,j);
end
eigenvectors(:,i) = eigenvectors(:,i) / norm(eigenvectors(:,i));
end
end
function [v, beta] = house(x)
% 计算 Householder 变换矩阵
sigma = norm(x);
if x(1) >= 0
v1 = x(1) + sigma;
else
v1 = x(1) - sigma;
end
v = x / v1;
v(1) = 1;
beta = 2 / (v'*v);
end
function [mu, shift] = wilkinsonShift(A)
% 计算带 Wilkinson 位移的隐式 QR 算法中的位移参数
d = (A(1,1) - A(2,2)) / 2;
if d >= 0
mu = A(2,2) - A(2,1)^2 / (d + sqrt(d^2 + A(2,1)^2));
else
mu = A(2,2) - A(2,1)^2 / (d - sqrt(d^2 + A(2,1)^2));
end
shift = A(2,2) - mu;
end
```
其中 `house` 函数用于计算 Householder 变换矩阵,`wilkinsonShift` 函数用于计算带 Wilkinson 位移的隐式 QR 算法中的位移参数。函数返回特征值向量和特征向量矩阵。
设计一个快速求解矩阵全部特征值的matlab程序
对于这个问题,我可以提供一些帮助。首先需要明确的是,求解矩阵全部特征值是一个比较复杂的问题,需要使用适当的算法。常见的算法包括幂法、反迭代法、QR分解法、雅可比方法等等。其中,QR分解法和雅可比方法比较适合求解较小的矩阵,而幂法和反迭代法更适合求解较大的矩阵。
下面是一个使用QR分解法求解矩阵全部特征值的MATLAB程序:
function [eigval] = QR_eig(A)
% 使用QR分解法求解矩阵全部特征值
% 输入参数:矩阵A
% 输出参数:向量eigval,包含矩阵A的全部特征值
n = size(A,1); % 矩阵A的阶数
eigval = zeros(n,1); % 初始化特征值向量
while n > 1
while max(abs(A(n,:))) > eps
[Q,R] = qr(A - eigval(n)*eye(n)); % QR分解
A = R*Q + eigval(n)*eye(n); % 更新A
end
eigval(n) = A(n,n); % 提取特征值
A = A(1:n-1,1:n-1); % 缩小矩阵A的规模
n = n - 1;
end
if n == 1
eigval(1) = A(1); % 处理最后一个特征值
end
end
需要注意的是,求解矩阵全部特征值的程序是一个很大的计算量,因此对于较大的矩阵,计算时间可能较长。
阅读全文