用matlab多种群遗传算法代码
时间: 2023-09-17 14:11:51 浏览: 91
标准遗传算法与多种群遗传算法Matlab代码,求解函数最值,GA包含交叉变异 多种群遗传算法MPGA包含移民操作
以下是一个使用MATLAB实现多种群遗传算法的示例代码:
```matlab
% 参数设置
num_populations = 5; % 种群数量
population_size = 50; % 种群大小
num_generations = 100; % 迭代次数
% 初始化种群
populations = cell(num_populations, 1);
for i = 1:num_populations
populations{i} = rand(population_size, num_variables); % num_variables为变量数量
end
% 迭代优化
best_fitness = zeros(num_generations, 1);
for gen = 1:num_generations
% 计算适应度值
fitness_values = zeros(num_populations, population_size);
for i = 1:num_populations
for j = 1:population_size
fitness_values(i, j) = fitness_function(populations{i}(j, :));
end
end
% 选择操作
new_populations = cell(num_populations, 1);
for i = 1:num_populations
% 锦标赛选择方法,随机选择若干个个体进行比较,选出适应度最好的个体
tournament_size = 5;
selected_indices = zeros(population_size, 1);
for j = 1:population_size
tournament_indices = randperm(population_size, tournament_size);
[~, idx] = max(fitness_values(i, tournament_indices));
selected_indices(j) = tournament_indices(idx);
end
new_populations{i} = populations{i}(selected_indices, :);
end
% 交叉操作
crossover_probability = 0.8;
for i = 1:num_populations
for j = 1:population_size/2
if rand < crossover_probability
parent_indices = randperm(num_populations, 2);
parent1 = new_populations{parent_indices(1)}(j, :);
parent2 = new_populations{parent_indices(2)}(j, :);
% 交叉方法,这里使用单点交叉
crossover_point = randi(num_variables);
child1 = [parent1(1:crossover_point), parent2(crossover_point+1:end)];
child2 = [parent2(1:crossover_point), parent1(crossover_point+1:end)];
new_populations{parent_indices(1)}(j, :) = child1;
new_populations{parent_indices(2)}(j, :) = child2;
end
end
end
% 变异操作
mutation_probability = 0.05;
for i = 1:num_populations
for j = 1:population_size
if rand < mutation_probability
% 变异方法,这里使用单点变异
mutation_point = randi(num_variables);
new_populations{i}(j, mutation_point) = rand;
end
end
end
% 更新种群
populations = new_populations;
% 记录每代最佳适应度值
best_fitness(gen) = max(max(fitness_values));
end
% 绘制适应度曲线
plot(best_fitness);
xlabel('Generation');
ylabel('Best Fitness');
title('Genetic Algorithm');
% 适应度函数示例
function fitness = fitness_function(variables)
% 根据实际问题定义适应度函数
% 这里仅为示例,假设适应度为变量之和
fitness = sum(variables);
end
```
请注意,这只是一个简单的示例代码,用于说明多种群遗传算法的基本实现。在实际应用中,你需要根据具体问题设计适应度函数和选择、交叉、变异等操作的方式。
阅读全文