多种群遗传算法 matlab代码
时间: 2023-07-29 21:04:10 浏览: 129
多种群遗传算法MATLAB源码
多种群遗传算法(Multi-Population Genetic Algorithm)是一种改进的遗传算法,将种群分成多个子种群,各自独立演化,最后融合得到最优解或近似最优解。下面是一个用MATLAB实现的多种群遗传算法的简单代码示例:
```matlab
% 遗传算法参数设置
populationSize = 100; % 种群大小
mutationRate = 0.01; % 变异率
crossoverRate = 0.6; % 交叉率
numGenerations = 100; % 迭代次数
% 创建多个子种群
numPopulations = 5;
populations = cell(numPopulations, 1);
for i = 1:numPopulations
populations{i} = randi([0, 1], populationSize, 10); % 假设每个个体是10维的二进制向量
end
% 迭代演化
for generation = 1:numGenerations
% 遍历每个子种群
for i = 1:numPopulations
population = populations{i};
fitness = evaluateFitness(population); % 计算适应度值
% 选择操作
parents = selection(population, fitness);
% 交叉操作
offspring = crossover(parents, crossoverRate);
% 变异操作
offspring = mutation(offspring, mutationRate);
% 替换操作
population = replacement(population, offspring);
% 更新当前子种群
populations{i} = population;
end
% 融合操作(可根据需要选择不同的融合策略)
combinedPopulation = [];
for i = 1:numPopulations
combinedPopulation = [combinedPopulation; populations{i}];
end
fitness = evaluateFitness(combinedPopulation);
[bestFitness, bestIndex] = max(fitness);
bestIndividual = combinedPopulation(bestIndex, :);
disp(['迭代次数:', num2str(generation)]);
disp(['最优解:', num2str(bestIndividual)]);
disp(['最优适应度:', num2str(bestFitness)]);
end
```
以上是一个简单的多种群遗传算法的MATLAB代码示例。根据实际问题需要,可以根据这个基本框架进行适当的调整和优化。
阅读全文