CParasolidTestGLDoc* pDoc = GetDocument(); MakeCurrent(TRUE); if(m_firstDraw == TRUE) { m_firstDraw = FALSE; // Otherwise the first draw is a blank ! VERIFY_GL(glDrawBuffer(GL_FRONT_AND_BACK)); ReRender(); } else VERIFY_GL(glDrawBuffer(GL_BACK)); VERIFY_GL(glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)); VERIFY_GL(glMatrixMode(GL_MODELVIEW)); VERIFY_GL(glPushMatrix()); VERIFY_GL(glTranslated( -pDoc->m_viewCentre.coord[0], -pDoc->m_viewCentre.coord[1], -pDoc->m_viewCentre.coord[2])); if(pDoc->m_nrenderGeoms != 0 || pDoc->m_nparts != 0) { VERIFY_GL(glCallList(m_partDisplaylist)); } VERIFY_GL(glFlush()); VERIFY_GL(glPopMatrix()); RenderAxis(0.0, 0.0); SwapBuffers(pDC->m_hDC); pDC->RealizePalette(); MakeCurrent(FALSE); VERIFY_GL(glViewport(0, 0, m_winWidth, m_winHeight)); SetViewVolume(); 翻译这段代码

时间: 2024-03-29 15:35:10 浏览: 63
这段代码是一个OpenGL的绘图函数,主要作用是在OpenGL窗口中绘制三维几何体。具体实现步骤如下: 1.获取文档对象(CParasolidTestGLDoc* pDoc)。 2.调用MakeCurrent(TRUE)函数将OpenGL渲染上下文设置为当前。 3.如果是第一次绘制,则将m_firstDraw标志设置为FALSE,并调用ReRender()函数重新渲染。 4.如果不是第一次绘制,则将绘制缓冲区设置为GL_BACK。 5.调用glClear()函数清除颜色缓冲区和深度缓冲区。 6.调用glMatrixMode()函数将当前矩阵模式设置为GL_MODELVIEW。 7.调用glPushMatrix()函数将当前矩阵保存到矩阵堆栈中。 8.调用glTranslated()函数将模型视图矩阵平移,以实现视角的变换。 9.如果有几何体或部件需要渲染,则调用glCallList()函数调用预先编译好的显示列表。 10.调用glFlush()函数将缓冲区的内容刷新到屏幕上。 11.调用glPopMatrix()函数从矩阵堆栈中弹出当前矩阵。 12.调用RenderAxis()函数绘制坐标轴。 13.调用SwapBuffers()函数交换前后缓冲区的内容,将绘制结果输出到屏幕。 14.调用RealizePalette()函数实现调色板的实现。 15.调用MakeCurrent(FALSE)函数将OpenGL渲染上下文设置为非当前。 16.调用glViewport()函数将视口大小设置为OpenGL窗口大小。 17.调用SetViewVolume()函数设置视景体。
阅读全文

相关推荐

void CMyImageView::OnBianyuan() { // TODO: 在此添加命令处理程序代码 CMyImageDoc* pDoc = GetDocument();//获取文档指针 ASSERT_VALID(pDoc); suanzi dlginputyuzhi;//定义阈值对话框类对象 dlginputyuzhi.DoModal();//弹出对话框 UpdateData(TRUE); if (pDoc->m_pDib == NULL) { AfxMessageBox("Error!"); return; } int mcols = pDoc->m_pDib->m_nCols; int mrows = pDoc->m_pDib->m_nRows; unsigned char* m_pData = NULL; m_pData = pDoc->m_pDib->pImgData; unsigned char* m_pDataOldPos = m_pData; unsigned char* a; int* b = NULL; int irows, jcols; int max = 0; int min = 255; vector<int>v; for (irows = 0; irows < mrows; irows++) { for (jcols = 0; jcols < mcols; jcols++) { int j = 0; int p = 0, q = 0; m_pData += irows * mcols + jcols; j += irows * mcols + jcols; if (j > mcols && (j + 1) % mcols != 0 && j < (mrows * (mcols - 1))) { p = 4 * (*m_pData) - *(m_pData + 1) - *(m_pData - 1) - *(m_pData - mcols) - *(m_pData + mcols); if (p > dlginputyuzhi.suanzi_1) { v.push_back(0); } else { v.push_back(255); } } m_pData = m_pDataOldPos; } } int aq = 0; for (irows = 0; irows < mrows; irows++) { for (jcols = 0; jcols < mcols; jcols++) { int j = 0; int p = 0, q = 0; m_pData += irows * mcols + jcols; j += irows * mcols + jcols; if (j > mcols && (j + 1) % mcols != 0 && j < (mrows * (mcols - 1))) { *m_pData = v[aq]; aq++; } m_pData = m_pDataOldPos; } } for (irows = 0; irows < mrows; irows++) { for (jcols = 0; jcols < mcols; jcols++) { int j = 0; int p = 0, q = 0; m_pData += irows * mcols + jcols; j += irows * mcols + jcols; if (irows>0&&irows<mrows-1&&jcols>0&&jcols<mcols-1) { if (*m_pData==0) { if (*(m_pData + 1) == 0 || *(m_pData - 1) == 0 || *(m_pData - mcols) == 0 || *(m_pData + mcols) == 0) { } else { *m_pData = 255; } } } m_pData = m_pDataOldPos; } } pDoc->UpdateAllViews(NULL); }仿照此代码,将其中的sobel算子改成Robert算子

用C++,创建MFC,用prewitt算子锐化,仿照下面代码void CMyImageView::OnSobelsuanzi() { // TODO: 在此添加命令处理程序代码 CMyImageDoc* pDoc = GetDocument();//获取文档指针 ASSERT_VALID(pDoc); Prewittsuanzi dlginputyuzhi;//定义阈值对话框类对象 dlginputyuzhi.DoModal();//弹出对话框 UpdateData(TRUE); if (pDoc->m_pDib == NULL) { AfxMessageBox("Error!"); return; } int mcols = pDoc->m_pDib->m_nCols; int mrows = pDoc->m_pDib->m_nRows; unsigned char* m_pData = NULL; m_pData = pDoc->m_pDib->pImgData; unsigned char* m_pDataOldPos = m_pData; unsigned char* a; int* b = NULL; int irows, jcols; int max = 0; int min = 255; vector<int>v; for (irows = 0; irows < mrows; irows++) { for (jcols = 0; jcols < mcols; jcols++) { int j = 0; int p = 0, q = 0; m_pData += irows * mcols + jcols; j += irows * mcols + jcols; if (j > mcols && (j + 1) % mcols != 0 && j < (mrows * (mcols - 1))) { p = (m_pData + mcols+1) + 2( * (m_pData + mcols )) + (m_pData + mcols - 1) - 2( * (m_pData - mcols)) - (m_pData - mcols - 1) - (m_pData - mcols + 1); q = 2( * (m_pData + 1)) + (m_pData + mcols + 1) + (m_pData - mcols + 1) - 2( * (m_pData - 1)) - (m_pData + mcols - 1) - (m_pData - mcols - 1); p = abs(p); q = abs(q); if (p > dlginputyuzhi.xyuzhi && q > dlginputyuzhi.yyuzhi) { v.push_back(0); } else { v.push_back(255); } } m_pData = m_pDataOldPos; } } int aq = 0; for (irows = 0; irows < mrows; irows++) { for (jcols = 0; jcols < mcols; jcols++) { int j = 0; int p = 0, q = 0; m_pData += irows * mcols + jcols; j += irows * mcols + jcols; if (j > mcols && (j + 1) % mcols != 0 && j < (mrows * (mcols - 1))) { m_pData = v[aq]; aq++; } m_pData = m_pDataOldPos; } } pDoc->UpdateAllViews(NULL); },生成梯度图像

大家在看

recommend-type

MotorContral.rar_VC++ 电机控制_上位机_电机_电机 上位机_电机vc上位机

这是电机控制方面上位机程序,需要vc++6.0开发,对学习电机控制很有帮助.
recommend-type

一种基于STM32的智能交通信号灯设计的研究.rar

一种基于STM32的智能交通信号灯设计的研究.rar
recommend-type

中国AI安防行业:Ambarella业绩反映AI需求强劲.zip

中国AI安防行业:Ambarella业绩反映AI需求强劲
recommend-type

【答题卡识别】 Hough变换答题卡识别【含Matlab源码 250期】.zip

Matlab领域上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像识别:表盘识别、车道线识别、车牌识别、答题卡识别、电器识别、跌倒检测、动物识别、发票识别、服装识别、汉字识别、红绿灯识别、火灾检测、疾病分类、交通标志牌识别、口罩识别、裂缝识别、目标跟踪、疲劳检测、身份证识别、人民币识别、数字字母识别、手势识别、树叶识别、水果分级、条形码识别、瑕疵检测、芯片识别、指纹识别
recommend-type

挖掘机叉车工程车辆检测数据集VOC+YOLO格式5067张7类别.7z

集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):5067 标注数量(xml文件个数):5067 标注数量(txt文件个数):5067 标注类别数:7 标注类别名称:[“ConcreteTruck”,“Excavator”,“Forklift”,“Loader”,“Steamroller”,“Truck”,“Worker”] 对应中文名:[“混凝土运输车”、“挖掘机”、“叉车”、“装载机”、“压路机”、”卡车“、”工人“] 更多信息:https://blog.csdn.net/FL1623863129/article/details/142093679

最新推荐

recommend-type

MFC 界面设计代码收集

CFileNameDoc* pDoc = GetDocument(); ASSERT_VALID(pDoc); CRect rectClient; CBrush brushBkColor; GetClientRect(rectClient); brushBkColor.CreateSolidBrush(RGB(255, 0, 0)); // 设置颜色为红色 pDC-&gt;...
recommend-type

应用拉普拉斯算子对图像实施空域高通滤波,以锐化图像

pDoc-&gt;m_hDIB = Template(pDoc-&gt;m_hDIB, tem, 3, 3, xishu); Invalidate(TRUE); } 在上面的代码中,我们首先定义了一个模板 tem,然后将其应用于图像,以对图像实施空域高通滤波,以锐化图像。最后,对图像进行了...
recommend-type

基于springboot的酒店管理系统源码(java毕业设计完整源码+LW).zip

项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
recommend-type

蓄电池与超级电容混合储能并网matlab simulink仿真模型 (1)混合储能采用低通滤波器进行功率分配,可有效抑制功率波动,并对超级电容的soc进行能量管理,soc较高时多放电,较低时少放电

蓄电池与超级电容混合储能并网matlab simulink仿真模型。 (1)混合储能采用低通滤波器进行功率分配,可有效抑制功率波动,并对超级电容的soc进行能量管理,soc较高时多放电,较低时少放电,soc较低时状态与其相反。 (2)蓄电池和超级电容分别采用单环恒流控制,研究了基于超级电容的SOC分区限值管理策略,分为放电下限区,放电警戒区,正常工作区,充电警戒区,充电上限区。 (3)采用三相逆变并网,将直流侧800v电压逆变成交流311v并网,逆变采用电压电流双闭环pi控制,pwm调制。 附有参考资料。
recommend-type

017 - 搞笑一句话台词.docx

017 - 搞笑一句话台词
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"