LIFT算法的输入的四张图块分别是怎么得到的
时间: 2024-03-08 19:45:24 浏览: 134
LIFT算法中的四张图块是通过对输入图像进行划分得到的。具体来说,LIFT算法将原始图像分成若干个大小相等的子块,然后对每个子块提取特征,并将这些特征组合成一个四张图块。
四张图块分别是:
1. SIFT图块:该图块包含了子块中提取的所有SIFT特征,每个特征向量的维度为128。
2. DoG图块:该图块包含了子块中提取的所有DoG特征,每个特征向量的维度为128。
3. GLOH图块:该图块包含了子块中提取的所有GLOH特征,每个特征向量的维度为144。
4. Color图块:该图块包含了子块中的颜色信息,每个像素的颜色值可以用RGB或HSV表示。
LIFT算法通过将这四张图块作为输入,训练一个深度神经网络,实现图像特征的提取和匹配。这样可以使得算法具有更好的泛化能力和鲁棒性,适用于不同类型的图像和场景。
相关问题
上述LIFT算法四张图块制作代码
以下是使用Python实现LIFT算法四张图块制作的示例代码:
```python
import cv2
import numpy as np
# 定义子块的大小
block_size = 16
# 读取输入图像
img = cv2.imread('input.jpg')
# 划分子块
h, w, _ = img.shape
h_blocks = h // block_size
w_blocks = w // block_size
img_blocks = np.zeros((h_blocks, w_blocks, block_size, block_size, 3), dtype=np.uint8)
for i in range(h_blocks):
for j in range(w_blocks):
img_blocks[i, j] = img[i*block_size:(i+1)*block_size, j*block_size:(j+1)*block_size]
# 提取SIFT、DoG和GLOH特征
sift = cv2.xfeatures2d.SIFT_create()
dog = cv2.xfeatures2d.DOG_create()
gloh = cv2.xfeatures2d.GLPH_create()
sift_blocks = []
dog_blocks = []
gloh_blocks = []
for i in range(h_blocks):
sift_row = []
dog_row = []
gloh_row = []
for j in range(w_blocks):
gray = cv2.cvtColor(img_blocks[i, j], cv2.COLOR_BGR2GRAY)
kps = sift.detect(gray, None)
kps, des = sift.compute(gray, kps)
sift_row.append(des)
kps = dog.detect(gray, None)
kps, des = dog.compute(gray, kps)
dog_row.append(des)
kps = gloh.detect(gray, None)
kps, des = gloh.compute(gray, kps)
gloh_row.append(des)
sift_blocks.append(sift_row)
dog_blocks.append(dog_row)
gloh_blocks.append(gloh_row)
# 将SIFT、DoG和GLOH特征合并
sift_list = [des for row in sift_blocks for des in row]
dog_list = [des for row in dog_blocks for des in row]
gloh_list = [des for row in gloh_blocks for des in row]
sift_block = np.concatenate(sift_list, axis=0)
dog_block = np.concatenate(dog_list, axis=0)
gloh_block = np.concatenate(gloh_list, axis=0)
# 提取颜色信息
color_block = np.zeros((h_blocks, w_blocks, block_size, block_size, 3), dtype=np.uint8)
for i in range(h_blocks):
for j in range(w_blocks):
color_block[i, j] = img_blocks[i, j]
# 将特征图块转换为四张图块
sift_img = np.array(sift_block, dtype=np.float32).reshape(-1, 128)
dog_img = np.array(dog_block, dtype=np.float32).reshape(-1, 128)
gloh_img = np.array(gloh_block, dtype=np.float32).reshape(-1, 144)
color_img = np.array(color_block, dtype=np.float32).reshape(-1, 3)
# 将四张图块保存到文件
np.savetxt('sift.txt', sift_img)
np.savetxt('dog.txt', dog_img)
np.savetxt('gloh.txt', gloh_img)
np.savetxt('color.txt', color_img)
```
上述代码将输入图像按照给定的子块大小划分成多个子块,并分别提取SIFT、DoG、GLOH和颜色信息。然后将这些特征组合成四张图块,并将它们保存到文件中供后续使用。需要注意的是,这里的代码只是一个示例,实际应用中需要根据具体情况进行修改和调整。
LIFT算法分别将四个图块输入什么
LIFT算法对于每个检测到的特征点,会在其邻域内提取一个大小为 $32\times 32$ 的图块,并将其分成 $4$ 个 $16\times 16$ 的子块进行处理。因此,对于每个子块,LIFT算法会分别提取一个 $128$ 维的特征向量。
具体地,对于每个子块,LIFT算法会执行以下步骤:
1. 计算子块内所有像素点的梯度幅值和方向,并将其分成 $8$ 个方向;
2. 对子块内的像素点进行方向分配,将其分配到最近的一个方向上;
3. 统计每个方向上的梯度幅值之和,得到一个 $8$ 维的梯度直方图;
4. 将 $4$ 个子块内的梯度直方图组合起来,得到一个 $32$ 维的特征向量。
因此,对于每个特征点,LIFT算法会产生 $4$ 个 $32$ 维的特征向量,共 $128$ 维,作为该特征点的描述符。
阅读全文