c++如何新开3个线程做某事,使用lamuda表达式,并且保障3个线程可以同时执行,执行完毕后主线程再继续

时间: 2024-03-10 20:49:47 浏览: 62
在 C++ 中,可以使用 `std::thread` 类来创建新的线程,并且可以使用 `std::mutex` 来实现线程之间的同步。为了保证三个线程可以同时执行,我们可以使用 `std::mutex` 和 `std::unique_lock` 来实现线程的互斥访问。具体的使用方法如下: ```c++ #include <iostream> #include <thread> #include <mutex> int main() { // 创建一个互斥量来保证线程的同步 std::mutex mtx; // 创建3个新的线程 std::thread t1([&mtx]() { std::unique_lock<std::mutex> lock(mtx); std::cout << "Hello from thread 1" << std::endl; }); std::thread t2([&mtx]() { std::unique_lock<std::mutex> lock(mtx); std::cout << "Hello from thread 2" << std::endl; }); std::thread t3([&mtx]() { std::unique_lock<std::mutex> lock(mtx); std::cout << "Hello from thread 3" << std::endl; }); // 等待所有线程执行完毕 t1.join(); t2.join(); t3.join(); return 0; } ``` 在上述代码中,我们创建了一个互斥量 `mtx` 来保证线程的同步。在每个线程中,我们使用 `std::unique_lock` 来获取互斥量的锁,确保每个线程在访问共享资源时都是互斥的。这样就可以保证三个线程可以同时执行,而不会相互干扰。 需要注意的是,在主线程中需要调用 `join()` 函数来等待所有线程执行完毕。在上述代码中,我们按照顺序依次调用了三个线程的 `join()` 函数,确保所有线程都执行完毕后程序才会退出。 另外,如果需要在多个线程之间共享数据,需要使用互斥量等同步机制来保证线程安全。
阅读全文

相关推荐

import numpy as np import matplotlib.pyplot as plt import sympy from scipy.interpolate import interp1d gamma = 1.2 R = 8.314 T0 = 500 Q = 50 * R * T0 a0 = np.sqrt(gamma * R * T0) M0 = 6.216 P_P0 = sympy.symbols('P_P0') num = 81 x0 = np.linspace(0,1,num) t_t0 = np.linspace(0,15,num) x = x0[1:] T_T0 = t_t0[1:] h0 = [] h1 = []#创建拉姆达为1的空数组 r = [] t = [] c = [] s = [] i = 0 for V_V0 in x: n1 = sympy.solve(1 / (gamma-1) * (P_P0 * V_V0 - 1) - 0.5 * (P_P0 + 1) * (1 - V_V0)- gamma * 0 * Q / a0 ** 2,P_P0)#lamuda=0的Hugoniot曲线方程 n2 = sympy.solve(1 / (gamma-1) * (P_P0 * V_V0 - 1) - 0.5 * (P_P0 + 1) * (1 - V_V0)- gamma * 1 * Q / a0 ** 2,P_P0)#lamuda=1的Hugoniot曲线方程 n3 = sympy.solve(-1 * P_P0 + 1 - gamma * M0 ** 2 * (V_V0 - 1),P_P0)#Reyleigh曲线方程 n4 = 12.014556 / V_V0#等温线 n5 = sympy.solve((P_P0 - 1 / (gamma+1) )* (V_V0-gamma / (gamma + 1)) - gamma / ((gamma + 1) ** 2),P_P0)#声速线 n6 = 10.6677 / np.power(V_V0,1.2)#等熵线 h0.append(n1) h1.append(n2) r.append(n3) t.append(n4) c.append(n5) s.append(n6) i = i+1 h0 = np.array(h0) h1 = np.array(h1) r = np.array(r) t = np.array(t) c = np.array(c) s = np.array(s) plt.plot(x,r,label='Rayleigh') plt.plot(x,t,color='purple',label='isothermal') plt.plot(x,s,color='skyblue',label='isentropic') a = np.where(h0 < 0) b = np.where(c < 0) h0 = np.delete(h0,np.where(h0 < 0)[0],axis = 0)#去除解小于0的值 h1 = np.delete(h1,np.where(h1 < 0)[0],axis = 0)#去除解小于0的值 c = np.delete(c,np.where(c < 0)[0],axis = 0)#去除解小于0的值 x0 = np.delete(x,a,axis = 0)#对应去除x轴上错误值的坐标 x1 = np.delete(x,b,axis = 0) plt.plot(x0,h0,label='Hugoniot(lambda=0)') plt.plot(x0,h1,label='Hugoniot(lambda=1)') plt.plot(x1,c,color='yellow',label='soniclocus') plt.ylim((0,50)) plt.legend() # 显示图例 plt.xlabel('V/V0') plt.ylabel('P/P0') f1 = interp1d(x1, c.T, kind='cubic') f2 = interp1d(x,r.T,kind='cubic') f3 = interp1d(x, t.T, kind='cubic') epsilon = 0.0001 x0 = 0.56 y0 = f1(x0) - f2(x0) while abs(y0) > epsilon: df = (f1(x0 + epsilon) - f2(x0 + epsilon) - y0) / epsilon x0 -= y0 / df y0 = f1(x0) - f2(x0) plt.scatter(x0, y0, 50, color ='red') plt.show()

clc clear % 数值法 %初值 % t的取值范围 tmin = 0; tmax = 100; % 精度 d_doc = 1; doc = (tmax-tmin)/d_doc; % 参数直接在后面改 Pf = 10; m = 700; ii = 0.03; %记得改 i0 = 0.02; nx = 45; r = 0.7*0.01; E = 1; theta = 0.1; d = -0.01; gamma = 1; kc = 20; aerfa = 0.7; lamuda = 0.8; fai = 10; beita = 1; w1 = 2; w2 = 1; n = 0.13; P0 = 25; huibig = 25; iworld=0.025; miu=33600; syms ee dp p P1 = -m*beita*(i0+d)*huibig*Pf/(((-fai*theta-(w1-w2)*E-log(n)+i0*beita+d*beita)... *(kc-huibig)*Pf*((-fai*theta-(w1-w2)*E-log(n)+i0*beita)/beita/aerfa)^(aerfa/(aerfa-1)))-beita*m*(i0+d)*E) eqn = miu*(-fai*theta-(w1-w2)*E-log(n)-iworld*beita)/beita- m*(i0+d)... *(E*p-kc*Pf)*beita/p/(-fai*theta-(w1-w2)*E-log(n)+d*beita)/(kc-huibig)/Pf==0; sol = solve(eqn, E); ee = max(sol); % 找到正根 disp(ee); T = linspace(tmin,tmax,doc); dt = T(2)-T(1); for i = 1:doc result_p(i) = P0; p = P0; eqn = (-fai*theta-(w1-w2)*ee-log(n))/beita+i0-dp/p... -aerfa*(beita*m*(ee*p-huibig*Pf)*(i0+d)/p/(-fai*theta-(w1-w2)*ee-log(n)+i0*beita+d*beita)... /(kc-huibig)/Pf)^((aerfa-1)/aerfa)==0; temp_dp = solve(eqn,dp); temp_dp = double(min(real(temp_dp))); dp1(i) = temp_dp; P0 = P0 + temp_dp*dt; disp(["计算中...",string(i/doc*100)," %"]); end figure plot(T,result_p) xlabel("t") ylabel("p") figure plot(T,dp1); xlabel("t") ylabel("dp") dp_p = dp1./result_p; figure; plot(T,dp_p) xlabel("t") ylabel("dp/p")错误使用 ^ Either base or exponent must be a scalar. 出错 untitled3 (第 55 行) /(kc-huibig)/Pf)^((aerfa-1)/aerfa)==0;怎么改

最新推荐

recommend-type

一份易上手的C# Lambda表达式入门学习资料

它可以包含表达式和语句,并且可以用于创建委托或表达式目录树类型,支持带有可绑定到委托或表达式树的输入参数的内联表达式。 Lambda表达式的组成部分 ------------------------- Lambda表达式由两个部分组成:...
recommend-type

免费的防止锁屏小软件,可用于域统一管控下的锁屏机制

免费的防止锁屏小软件,可用于域统一管控下的锁屏机制
recommend-type

Python代码实现带装饰的圣诞树控制台输出

内容概要:本文介绍了一段简单的Python代码,用于在控制台中输出一棵带有装饰的圣诞树。具体介绍了代码结构与逻辑,包括如何计算并输出树形的各层,如何加入装饰元素以及打印树干。还提供了示例装饰字典,允许用户自定义圣诞树装饰位置。 适用人群:所有对Python编程有一定了解的程序员,尤其是想要学习控制台图形输出的开发者。 使用场景及目标:适用于想要掌握如何使用Python代码创建控制台艺术,特别是对于想要增加节日氛围的小项目。目标是帮助开发者理解和实现基本的字符串操作与格式化技巧,同时享受创造乐趣。 其他说明:本示例不仅有助于初学者理解基本的字符串处理和循环机制,而且还能激发学习者的编程兴趣,通过调整装饰物的位置和树的大小,可以让输出更加个性化和丰富。
recommend-type

白色大气风格的设计师作品模板下载.zip

白色大气风格的设计师作品模板下载.zip
recommend-type

电商平台开发需求文档.doc

电商平台开发需求文档.doc
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。