基于stm32使用定时器1向串口3定时接收数据
时间: 2023-12-31 21:06:33 浏览: 76
以下是一个基于STM32的定时器1向串口3定时接收数据的示例代码:
```c
#include "stm32f4xx.h"
#include <stdio.h>
#include <string.h>
#define USART3_TX_PIN GPIO_Pin_10
#define USART3_RX_PIN GPIO_Pin_11
#define USART3_TX_GPIO_PORT GPIOC
#define USART3_RX_GPIO_PORT GPIOC
#define USART3_TX_GPIO_CLK RCC_AHB1Periph_GPIOC
#define USART3_RX_GPIO_CLK RCC_AHB1Periph_GPIOC
#define USART3_CLK RCC_APB1Periph_USART3
#define BAUDRATE 115200
#define BUFFER_SIZE 100
volatile uint8_t rxBuffer[BUFFER_SIZE];
volatile uint8_t rxIndex = 0;
void USART3_Init(void)
{
USART_InitTypeDef USART_InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
RCC_AHB1PeriphClockCmd(USART3_TX_GPIO_CLK | USART3_RX_GPIO_CLK, ENABLE);
GPIO_PinAFConfig(GPIOC, GPIO_PinSource10, GPIO_AF_USART3);
GPIO_PinAFConfig(GPIOC, GPIO_PinSource11, GPIO_AF_USART3);
GPIO_InitStructure.GPIO_Pin = USART3_TX_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(USART3_TX_GPIO_PORT, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = USART3_RX_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(USART3_RX_GPIO_PORT, &GPIO_InitStructure);
RCC_APB1PeriphClockCmd(USART3_CLK, ENABLE);
USART_InitStructure.USART_BaudRate = BAUDRATE;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART3, &USART_InitStructure);
USART_ITConfig(USART3, USART_IT_RXNE, ENABLE);
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
USART_Cmd(USART3, ENABLE);
}
void USART3_IRQHandler(void)
{
if (USART_GetITStatus(USART3, USART_IT_RXNE) != RESET)
{
rxBuffer[rxIndex++] = USART_ReceiveData(USART3);
if (rxIndex >= BUFFER_SIZE)
{
rxIndex = 0;
}
}
}
void TIM1_Init(void)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
TIM_TimeBaseStructure.TIM_Period = 1000; // 定时器周期为1ms
TIM_TimeBaseStructure.TIM_Prescaler = 8400; // 时钟预分频为8400,使定时器时钟为10kHz
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);
TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE);
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
NVIC_InitStructure.NVIC_IRQChannel = TIM1_UP_TIM10_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
TIM_Cmd(TIM1, ENABLE);
}
void TIM1_UP_TIM10_IRQHandler(void)
{
if (TIM_GetITStatus(TIM1, TIM_IT_Update) != RESET)
{
char str[BUFFER_SIZE];
if (rxIndex > 0)
{
memcpy(str, rxBuffer, rxIndex);
str[rxIndex] = '\0';
printf("Received string: %s\n", str);
rxIndex = 0;
}
TIM_ClearITPendingBit(TIM1, TIM_IT_Update);
}
}
int main(void)
{
USART3_Init();
TIM1_Init();
while (1)
{
}
}
```
在这个示例代码中,我们使用了定时器1和串口3。定时器1的周期为1ms,时钟预分频为8400,使得定时器时钟为10kHz。串口3的波特率为115200bps。当定时器1的中断被触发时,我们检查串口3是否有数据可接收,如果有则将数据读取到rxBuffer中,并且如果rxBuffer已经接收满了,我们将接收的数据打印到终端上,并清空rxBuffer。我们可以通过在终端上向串口3发送数据来测试这个程序。
阅读全文