np.array([0, max(v_c, 0.01)])
时间: 2024-06-05 21:06:54 浏览: 73
This creates a NumPy array with two elements - the first element is 0, and the second element is the maximum value between v_c and 0.01. If v_c is greater than 0.01, the second element will be v_c. If v_c is less than or equal to 0.01, the second element will be 0.01.
相关问题
翻译代码import numpy as np from cvxopt import matrix, solvers solvers.options['show_progress'] = False # 市场出清,考虑网络阻塞 def market_clearing(alpha): # 供给曲线的截距和斜率 a_real = np.array([15.0, 18.0]) b_real = np.array([0.01, 0.008]) # 需求曲线的截距和斜率 c_real = np.array([40.0, 40.0]) * -1 d_real = np.array([0.08, 0.06]) # 机组功率上下限 p_min = np.array([0.0, 0.0]) p_max = np.array([500.0, 500.0]) # 负荷需求上下限 q_min = np.zeros(2) q_max = np.array([500.0, 666.666666666667]) J_g = ([[-0.333333333333333, -0.333333333333333, -0.666666666666667], [0.333333333333334, -0.666666666666667, -0.333333333333333], [0, 0, 0]]) J = np.array([[-0.333333333333333, 0.0, 0.333333333333333, -0.333333333333334], [-0.333333333333333, 0.0, 0.333333333333333, 0.666666666666667], [-0.666666666666667, 0.0, 0.666666666666667, 0.333333333333333]]) J_max = np.array([25.0, 1000.0, 1000.0, 25.0, 1000.0, 1000.0]) P = matrix(np.diag(np.append(b_real, d_real))) q = matrix(np.append(alpha, c_real)) G = matrix(np.vstack((J, -J, np.diag(-np.ones(4)), np.diag(np.ones(4))))) h = matrix(np.hstack((J_max, -p_min, -q_min, p_max, q_max))) A = matrix(np.hstack((-np.ones(2), np.ones(2)))).T b = matrix(0.0) sv = solvers.qp(P, q, G, h, A, b) miu1 = sv['z'][0:3] miu2 = sv['z'][3:6] nodal_price = (np.ones((3, 1)) * sv['y'][0] - np.dot(J_g, miu1 - miu2)).squeeze() nodal_price_g = np.array([nodal_price[0], nodal_price[2]]) mc_amount = np.array(sv['x'][:2]).squeeze() cost_real = 0.5 * b_real * mc_amount ** 2 + a_real * mc_amount cost_declare = mc_amount * np.transpose(nodal_price_g) profit = cost_declare - cost_real return nodal_price_g, profit if __name__ == '__main__': alpha = np.array([20.29, 22.98]) print(market_clearing(alpha))
这段代码实现了一个市场出清的过程,用于计算电力市场中的供需关系和市场价格。具体来说,代码中有以下几个重要的变量和参数:
- a_real和b_real:表示供给曲线的截距和斜率,是一个长度为2的数组。
- c_real和d_real:表示需求曲线的截距和斜率,同样是一个长度为2的数组。
- p_min和p_max:表示机组功率的上下限,也是一个长度为2的数组。
- q_min和q_max:表示负荷需求的上下限,同样是一个长度为2的数组。
- J_g、J和J_max:都是用于计算市场价格的矩阵或数组。
- alpha:是一个长度为2的数组,表示供给和需求量的差异。
代码中使用了cvxopt库中的qp函数,通过定义P、q、G、h、A和b等矩阵,来求解最优化问题,得到了供给量和需求量的均衡点。最后,通过计算市场价格和成本等,得到了节点价格和利润的结果,并将其返回。
在主函数中,代码对market_clearing函数进行了测试,并输出了结果。
cloud = o3d.io.read_point_cloud("Model.pcd") Delta = 0.01 dPlatform = 0.3 point_cloud = np.asarray(cloud.points) _, _, z_min = np.amin(point_cloud, axis=0) idx = [] for i in range(len(point_cloud)): index = np.floor((point_cloud[i][2] - z_min) / dPlatform) sliceMin = z_min + index * dPlatform if sliceMin <= point_cloud[i][2] < sliceMin + Delta: idx.append(i) slicing_cloud = (cloud.select_by_index(idx))这段代码获取了几个点云切片,如何改可以单独获得每个切片
可以尝试将获取切片的部分放在一个循环内,每次循环获取一个切片,将其存储到一个列表中。具体代码如下:
```
cloud = o3d.io.read_point_cloud("Model.pcd")
Delta = 0.01
dPlatform = 0.3
point_cloud = np.asarray(cloud.points)
_, _, z_min = np.amin(point_cloud, axis=0)
slicing_clouds = [] # 存储每个切片的列表
for index in range(int((np.max(point_cloud[:,2]) - z_min) / dPlatform)): # 遍历每个切片
idx = []
sliceMin = z_min + index * dPlatform # 当前切片的最小高度
for i in range(len(point_cloud)): # 获取当前切片中的点
if sliceMin <= point_cloud[i][2] < sliceMin + Delta:
idx.append(i)
slicing_clouds.append(cloud.select_by_index(idx)) # 将当前切片存储到列表中
```
这样,`slicing_clouds` 列表中的每个元素就是一个单独的切片点云了。可以通过 `slicing_clouds[i]` 获取第 i 个切片的点云。
阅读全文