使用keras实现Multi-Head Self-Attentiond的代码
时间: 2023-05-28 16:05:37 浏览: 144
基于Keras的attention实战
以下是使用Keras实现Multi-Head Self-Attention的示例代码:
```python
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
class MultiHeadSelfAttention(keras.layers.Layer):
def __init__(self, embed_dim, num_heads):
super(MultiHeadSelfAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
if embed_dim % num_heads != 0:
raise ValueError(
f"embedding dimension = {embed_dim} should be divisible by number of heads = {num_heads}"
)
self.projection_dim = embed_dim // num_heads
self.query_dense = layers.Dense(embed_dim)
self.key_dense = layers.Dense(embed_dim)
self.value_dense = layers.Dense(embed_dim)
self.combine_heads = layers.Dense(embed_dim)
def attention(self, query, key, value):
score = tf.matmul(query, key, transpose_b=True)
dim_key = tf.cast(tf.shape(key)[-1], tf.float32)
scaled_score = score / tf.math.sqrt(dim_key)
weights = tf.nn.softmax(scaled_score, axis=-1)
output = tf.matmul(weights, value)
return output, weights
def separate_heads(self, x, batch_size):
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.projection_dim))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, inputs):
batch_size = tf.shape(inputs)[0]
query = self.query_dense(inputs)
key = self.key_dense(inputs)
value = self.value_dense(inputs)
query = self.separate_heads(query, batch_size)
key = self.separate_heads(key, batch_size)
value = self.separate_heads(value, batch_size)
attention, weights = self.attention(query, key, value)
attention = tf.transpose(attention, perm=[0, 2, 1, 3])
concat_attention = tf.reshape(attention, (batch_size, -1, self.embed_dim))
output = self.combine_heads(concat_attention)
return output
```
该代码定义了一个名为MultiHeadSelfAttention的Keras层。在初始化中,它接受输入的嵌入维度和要使用的头数。在调用中,它首先通过三个全连接层(Dense)将输入嵌入到查询、键和值中。然后,它将每个嵌入向量分成多个头,并在每个头中执行自注意力计算。最后,它将每个头的输出连接起来,并通过另一个全连接层将它们合并成一个单一的向量。
阅读全文