c#实现贝叶斯评估算法
时间: 2023-10-02 07:05:35 浏览: 107
基于C#的朴素贝叶斯算法
贝叶斯评估算法是一种基于概率论的统计算法,用于估计一个事件发生的可能性。在 C# 中,可以通过编写以下代码实现贝叶斯评估算法:
```csharp
// 定义贝叶斯算法类
public class BayesianAlgorithm
{
// 计算先验概率
private double ComputePriorProbability(string category, List<string> categories)
{
double count = categories.Count(c => c == category);
return count / categories.Count;
}
// 计算条件概率
private double ComputeConditionalProbability(string word, string category, List<string> words, List<string> categories)
{
double countWordInCategory = words.Where((w, i) => categories[i] == category && w == word).Count();
double countCategory = categories.Count(c => c == category);
return countWordInCategory / countCategory;
}
// 计算后验概率
private double ComputePosteriorProbability(string category, List<string> words, List<string> categories)
{
double prior = ComputePriorProbability(category, categories);
double conditional = words.Select(w => ComputeConditionalProbability(w, category, words, categories)).Aggregate((x, y) => x * y);
return prior * conditional;
}
// 预测分类
public string PredictCategory(List<string> words, List<string> categories)
{
List<string> distinctCategories = categories.Distinct().ToList();
Dictionary<string, double> probabilities = new Dictionary<string, double>();
foreach (string category in distinctCategories)
{
double posterior = ComputePosteriorProbability(category, words, categories);
probabilities.Add(category, posterior);
}
return probabilities.OrderByDescending(p => p.Value).First().Key;
}
}
```
在这个类中,我们定义了三个私有方法来计算先验概率、条件概率和后验概率。然后,我们使用这些方法来预测输入文本的分类。在 `PredictCategory` 方法中,我们首先获取所有不同的分类,并为每个分类计算后验概率。最后,我们返回具有最高概率的分类。
示例用法:
```csharp
List<string> words = new List<string> { "good", "great", "bad", "terrible" };
List<string> categories = new List<string> { "positive", "positive", "negative", "negative" };
BayesianAlgorithm bayesianAlgorithm = new BayesianAlgorithm();
string predictedCategory = bayesianAlgorithm.PredictCategory(words, categories);
Console.WriteLine("Predicted category: " + predictedCategory);
```
这个例子中,我们使用一个简单的情感分类问题作为示例。我们有四个词语和两个分类,然后使用 `BayesianAlgorithm` 类来预测一个新的文本所属的分类。
阅读全文