recursive-fpn pytorch代码
时间: 2023-09-04 21:16:28 浏览: 202
以下是一个简单的基于PyTorch实现的Recursive FPN代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class RecursiveFPN(nn.Module):
def __init__(self, in_channels, out_channels):
super(RecursiveFPN, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x1)
if x.shape[2] > 2:
x3 = self.pool(x2)
x3 = self.forward(x3)
x3_upsampled = F.interpolate(x3, size=x2.shape[2:], mode='nearest')
x2 = x2 + x3_upsampled
return x2
```
这是一个简单的递归FPN模块,采用两层卷积层和一个最大池化层。如果输入张量的高度或宽度大于2,递归地对下采样后的张量进行处理,并将其上采样与当前层的张量相加。
阅读全文