def recoverData(Z, U, K): """ Recovers an approximation of the original data when using the projected data """ m,n = Z.shape[0],U.shape[0] X_rec = np.zeros((m,n)) U_reduced = U[:,:K] for i in range(m): X_rec[i,:] = Z[i,:] @ U_reduced.T return X_rec
时间: 2023-06-26 22:05:22 浏览: 64
VSC8664 Datasheet.pdf
这是一个 Python 函数,用于从经过投影的数据 Z 和降维后的特征向量 U 中恢复近似原始数据。K 是降维后使用的特征向量数量。具体来说,函数首先创建一个大小为 (m,n) 的零矩阵 X_rec,其中 m 是样本数,n 是特征数。然后,它从 U 中选择前 K 个特征向量,将其存储在 U_reduced 中。接下来,函数遍历每个样本,将其对应的投影数据 Z[i,:] 与 U_reduced.T 相乘,并将结果存储在 X_rec[i,:] 中。最后,函数返回 X_rec。
阅读全文