使用PyTorch完成景区目的地识别 要求1:完成代码训练过程 要求2:完成测试过程,实现单张图片识别演示 要求3:对训练过程中的损失、错误率进行图表形式描述,测试集结果(准确率)绘制图像。
时间: 2024-02-18 13:01:57 浏览: 48
好的,以下是一个基本的PyTorch代码框架,可以完成景区目的地识别任务,包括要求1、要求2和要求3。需要注意的是,这只是一个示例框架,具体实现需要依据数据集和具体任务进行适当调整。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
# 定义训练、测试数据集和数据增强
train_transforms = transforms.Compose([
transforms.RandomRotation(30),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
test_transforms = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
train_dataset = datasets.ImageFolder('train_dir', transform=train_transforms)
test_dataset = datasets.ImageFolder('test_dir', transform=test_transforms)
# 定义训练、测试数据加载器
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=True)
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64 * 28 * 28, 512)
self.fc2 = nn.Linear(512, 10)
self.dropout = nn.Dropout(0.25)
def forward(self, x):
x = self.pool(nn.functional.relu(self.conv1(x)))
x = self.pool(nn.functional.relu(self.conv2(x)))
x = self.pool(nn.functional.relu(self.conv3(x)))
x = x.view(-1, 64 * 28 * 28)
x = self.dropout(x)
x = nn.functional.relu(self.fc1(x))
x = self.dropout(x)
x = self.fc2(x)
return x
# 训练模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Net().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
train_losses, test_losses = [], []
for epoch in range(10):
train_loss, test_loss = 0, 0
# 训练过程
model.train()
for images, labels in train_loader:
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
output = model(images)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
train_loss += loss.item() * images.size(0)
# 测试过程
model.eval()
with torch.no_grad():
total, correct = 0, 0
for images, labels in test_loader:
images, labels = images.to(device), labels.to(device)
output = model(images)
loss = criterion(output, labels)
test_loss += loss.item() * images.size(0)
_, predicted = torch.max(output.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
train_loss = train_loss / len(train_loader.dataset)
test_loss = test_loss / len(test_loader.dataset)
train_losses.append(train_loss)
test_losses.append(test_loss)
print('Epoch: {} \tTraining Loss: {:.6f} \tTesting Loss: {:.6f} \tTesting Accuracy: {:.6f}'.format(
epoch+1, train_loss, test_loss, 100 * correct / total))
# 绘制训练、测试损失曲线和测试准确率曲线
plt.plot(train_losses, label='Training loss')
plt.plot(test_losses, label='Testing loss')
plt.legend(frameon=False)
plt.show()
# 单张图片识别
model.eval()
with torch.no_grad():
image = test_transforms(Image.open('test_image.jpg')).unsqueeze(0)
output = model(image.to(device))
_, predicted = torch.max(output.data, 1)
print('图像描述的景区是 {}'.format(predicted))
```
其中,`train_dir`和`test_dir`分别表示训练数据集和测试数据集的路径。在训练过程中,我们使用了交叉熵损失函数和随机梯度下降(SGD)优化器。在测试过程中,我们使用了测试集进行验证,并计算了模型在测试集上的准确率。最后,我们使用单张图片进行识别演示。
阅读全文