yolov5 Stemblock
时间: 2024-02-02 21:10:16 浏览: 181
YOLOv5中的Stemblock是网络的起始部分,用于提取输入图像的低级特征。它由一系列卷积层和池化层组成,以逐渐减小特征图的尺寸和通道数。Stemblock的设计旨在捕捉图像的全局信息,并为后续的特征提取过程提供良好的基础。
以下是YOLOv5中Stemblock的示例代码:
```python
import torch
import torch.nn as nn
class Stemblock(nn.Module):
def __init__(self, in_channels, out_channels):
super(Stemblock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(out_channels)
self.relu2 = nn.ReLU(inplace=True)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = self.pool(x)
return x
# 使用Stemblock
in_channels = 3
out_channels = 64
input = torch.randn(1, in_channels, 416, 416)
stemblock = Stemblock(in_channels, out_channels)
output = stemblock(input)
print(output.shape) # 输出:torch.Size([1, 64, 208, 208])
```
在上述代码中,Stemblock接受一个输入张量,经过一系列的卷积、批归一化、ReLU激活和池化操作后,输出一个特征图。这个特征图将作为后续特征提取的输入。
阅读全文