data2.to_csv("sentiment.csv",header=False,index=False,mode='a+')什么意思
时间: 2023-06-18 13:04:43 浏览: 81
这段代码是将DataFrame对象 `data2` 写入到名为 `sentiment.csv` 的文件中,其中:
- `header=False` 表示不将列名写入到文件中;
- `index=False` 表示不将行索引写入到文件中;
- `mode='a+'` 表示以追加模式打开文件,如果文件不存在则创建它。追加模式是指将数据添加到文件的末尾,而不是覆盖文件原有的内容。
因此,这段代码的作用是将 `data2` 写入到 `sentiment.csv` 文件中,并将数据添加到文件末尾。如果文件不存在,则创建一个新的文件。
相关问题
df = pd.read_csv('stock_comments_analyzed.csv', parse_dates=['created_time']) grouped = df['polarity'].groupby(df.created_time.dt.date) def BI_Simple_func(row): pos = row[row == 1].count() neg = row[row == 0].count() return (pos-neg)/(pos+neg) BI_Simple_index = grouped.apply(BI_Simple_func) def BI_func(row): pos = row[row == 1].count() neg = row[row == 0].count() bi = np.log(1.0 * (1+pos) / (1+neg)) return bi BI_index = grouped.apply(BI_func) sentiment_idx = pd.concat([BI_index.rename('BI'), BI_Simple_index.rename('BI_Simple')], axis=1) quotes = pd.read_csv('./data/sh000001.csv', parse_dates=['date']) quotes.set_index('date', inplace=True) sentiment_idx.index = pd.to_datetime(sentiment_idx.index) merged = pd.merge(sentiment_idx, quotes, how='left', left_index=True, right_index=True) merged.fillna(method='ffill', inplace=True) merged['BI_MA'] = merged['BI'].rolling(window=10, center=False).mean() merged['BI_Simple_MA'] = merged['BI_Simple'].rolling(window=10, center=False).mean() merged.to_csv('merged_sentiment_idx.csv')
这段代码是关于股票情绪指数的计算和处理,包括读取股票评论数据并按日期分组,定义了两个函数用于计算简单的情绪指数和 BI 指数,然后将这些指数与股票行情数据进行合并并计算移动平均数,最后将结果保存到 csv 文件中。其中,BI 指数是一种用于衡量市场情绪的指标,通过计算买方和卖方之间的力量平衡来反映市场的情绪状态。
报错ValueError: np.nan is an invalid document, expected byte or unicode string. 怎么修改import pandas as pd from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # 读取电影评论数据集 data = pd.read_csv(r'D:\shujukexue\review_data.csv', encoding='gbk') x = v.fit_transform(df['eview'].apply(lambda x: np.str_(x))) # 分割数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(data['review'], data['sentiment'], test_size=0.2, random_state=42) # 创建CountVectorizer对象进行词频统计和向量化 count_vectorizer = CountVectorizer() X_train_count = count_vectorizer.fit_transform(X_train) X_test_count = count_vectorizer.transform(X_test) # 创建TfidfVectorizer对象进行TF-IDF计算和向量化 tfidf_vectorizer = TfidfVectorizer() X_train_tfidf = tfidf_vectorizer.fit_transform(X_train) X_test_tfidf = tfidf_vectorizer.transform(X_test) # 创建逻辑回归分类器并在CountVectorizer上进行训练和预测 classifier_count = LogisticRegression() classifier_count.fit(X_train_count, y_train) y_pred_count = classifier_count.predict(X_test_count) accuracy_count = accuracy_score(y_test, y_pred_count) print("Accuracy using CountVectorizer:", accuracy_count) # 创建逻辑回归分类器并在TfidfVectorizer上进行训练和预测 classifier_tfidf = LogisticRegression() classifier_tfidf.fit(X_train_tfidf, y_train) y_pred_tfidf = classifier_tfidf.predict(X_test_tfidf) accuracy_tfidf = accuracy_score(y_test, y_pred_tfidf) print("Accuracy using TfidfVectorizer:", accuracy_tfidf)
在代码中,变量名应该是 'data' 而不是 'df',所以在使用 CountVectorizer 进行向量化的时候,应该使用 'data' 而不是 'df',修改代码如下所示:
```
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
# 读取电影评论数据集
data = pd.read_csv(r'D:\shujukexue\review_data.csv', encoding='gbk')
# 分割数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(data['review'], data['sentiment'], test_size=0.2, random_state=42)
# 创建CountVectorizer对象进行词频统计和向量化
count_vectorizer = CountVectorizer()
X_train_count = count_vectorizer.fit_transform(X_train)
X_test_count = count_vectorizer.transform(X_test)
# 创建TfidfVectorizer对象进行TF-IDF计算和向量化
tfidf_vectorizer = TfidfVectorizer()
X_train_tfidf = tfidf_vectorizer.fit_transform(X_train)
X_test_tfidf = tfidf_vectorizer.transform(X_test)
# 创建逻辑回归分类器并在CountVectorizer上进行训练和预测
classifier_count = LogisticRegression()
classifier_count.fit(X_train_count, y_train)
y_pred_count = classifier_count.predict(X_test_count)
accuracy_count = accuracy_score(y_test, y_pred_count)
print("Accuracy using CountVectorizer:", accuracy_count)
# 创建逻辑回归分类器并在TfidfVectorizer上进行训练和预测
classifier_tfidf = LogisticRegression()
classifier_tfidf.fit(X_train_tfidf, y_train)
y_pred_tfidf = classifier_tfidf.predict(X_test_tfidf)
accuracy_tfidf = accuracy_score(y_test, y_pred_tfidf)
print("Accuracy using TfidfVectorizer:", accuracy_tfidf)
```
阅读全文