def compare_dicts(struct_file, default_file, seq_file, golden_seq): matches = 0 num_regs = len(struct_file) keys = list(seq_file.keys()) control = 0 for address in seq_file: if golden_seq[address] != seq_file[address]: str = "ERROR Testbench seq doesn't match standalone seq address {} testbench value {} standalone value {}".format(address, golden_seq[address], seq_file[address]) # make sure error is print on a single line str = str.replace("\n","") print(str) control = -1 if control == -1: return -1
时间: 2023-05-22 21:04:13 浏览: 151
这段代码是用来比较字典内容的。有四个参数:struct_file, default_file, seq_file, golden_seq。函数会先定义一个变量matches,用来统计匹配的次数。接着,函数会计算struct_file字典里键值对的数量,并将seq_file字典里的键值的键名存储到变量keys里。之后,函数会使用循环遍历seq_file字典中的地址。如果golden_seq字典里的地址与seq_file字典里的地址的值不相等,函数会抛出一条错误信息,指明两个字典中内容不同的地址和对应的值。
相关问题
给下列代码加注释: def merge_accumulate_client_update(self, list_num_proc, list_state_dict, lr): total_num_proc = sum(list_num_proc) # merged_state_dict = dict() dict_keys = list_state_dict[0].keys() for state_dict in list_state_dict[1:]: assert state_dict.keys() == dict_keys # accumulate extra sgrad and remove from state_dict if self.use_adaptive and self.is_adj_round(): prefix = "extra." for state_dict in list_state_dict: del_list = [] for key, param in state_dict.items(): if key[:len(prefix)] == prefix: sgrad_key = key[len(prefix):] mask_0 = self.model.get_mask_by_name(sgrad_key) == 0. dense_sgrad = torch.zeros_like(mask_0, dtype=torch.float) dense_sgrad.masked_scatter_(mask_0, param) # no need to divide by lr self.control.accumulate(sgrad_key, dense_sgrad) del_list.append(key) for del_key in del_list: del state_dict[del_key]
```python
def merge_accumulate_client_update(self, list_num_proc, list_state_dict, lr):
total_num_proc = sum(list_num_proc)
# merged_state_dict = dict()
dict_keys = list_state_dict[0].keys()
# Check if all state dicts have the same keys
for state_dict in list_state_dict[1:]:
assert state_dict.keys() == dict_keys
# accumulate extra sgrad and remove from state_dict
if self.use_adaptive and self.is_adj_round():
prefix = "extra."
for state_dict in list_state_dict:
del_list = []
for key, param in state_dict.items():
# Check if the key starts with 'extra.'
if key[:len(prefix)] == prefix:
# Get the corresponding sgrad key
sgrad_key = key[len(prefix):]
# Create a mask of zeroes
mask_0 = self.model.get_mask_by_name(sgrad_key) == 0.
# Create a dense tensor and fill it with values from param based on the mask
dense_sgrad = torch.zeros_like(mask_0, dtype=torch.float)
dense_sgrad.masked_scatter_(mask_0, param)
# Accumulate the dense sgrad without dividing by lr
self.control.accumulate(sgrad_key, dense_sgrad)
# Add the key to the delete list
del_list.append(key)
# Remove the keys from the state_dict
for del_key in del_list:
del state_dict[del_key]
```
这段代码实现了一个`merge_accumulate_client_update`方法,主要功能是合并和累加`list_state_dict`中的状态字典。以下是对代码的注释:
- `total_num_proc`:所有进程数的总和。
- `dict_keys`:状态字典的键列表。
- 检查所有状态字典是否具有相同的键。
- 如果使用自适应且处于调整轮次,则累加额外的`sgrad`并从状态字典中删除。
- `prefix`:额外`sgrad`的前缀。
- 对于每个状态字典,遍历键和参数。
- 如果键以`prefix`开头,则获取相应的`sgrad`键。
- 创建一个零填充的掩码。
- 创建一个稠密张量,并根据掩码从参数中填充值。
- 累加不除以`lr`的稠密`sgrad`。
- 将键添加到删除列表。
- 从状态字典中删除键。
pretrain_dict = load_dict['state_dicts'] KeyError: 'state_dicts'
这个错误是由于在load_dict字典中没有名为'state_dicts'的键所导致的。你需要检查一下load_dict字典是否包含了这个键。如果没有,你需要确认你的模型是否被正确地保存,并且在加载模型时传递了正确的路径和文件名。如果确定模型被正确地保存和加载,但仍然出现这个错误,你可能需要检查一下模型的版本和代码是否匹配。
阅读全文