loss_history=nn.train(X, y, learning_rate, num_epochs)
时间: 2024-01-26 07:02:10 浏览: 109
这段代码是在训练 BP 神经网络模型。其中,X 是输入数据,y 是目标数据,learning_rate 是学习率,num_epochs 是训练轮数。
具体来说,该方法会根据输入数据和目标数据,使用 BP 神经网络模型进行训练。在每一轮训练中,模型会根据输入数据和当前的网络参数计算出预测结果,并计算出预测结果与目标数据之间的误差。然后,模型会反向传播误差,更新网络参数,使得下一轮的预测结果更加接近目标数据。学习率决定了每一轮更新参数的幅度,即参数的变化量。
在训练过程中,loss_history 变量会记录每一轮训练的误差,以便后续分析模型的性能。最终,该方法会返回 loss_history 变量,以便进行可视化或其他分析。
下面是一个示例代码:
```python
import numpy as np
class NeuralNetwork:
def __init__(self, input_size, hidden_size, output_size):
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.W1 = np.random.randn(self.input_size, self.hidden_size)
self.b1 = np.random.randn(self.hidden_size)
self.W2 = np.random.randn(self.hidden_size, self.output_size)
self.b2 = np.random.randn(self.output_size)
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(self, x):
return x * (1 - x)
def forward(self, X):
self.z1 = np.dot(X, self.W1) + self.b1
self.a1 = self.sigmoid(self.z1)
self.z2 = np.dot(self.a1, self.W2) + self.b2
y_pred = self.sigmoid(self.z2)
return y_pred
def backward(self, X, y, y_pred, learning_rate):
delta2 = (y - y_pred) * self.sigmoid_derivative(y_pred)
dW2 = np.dot(self.a1.T, delta2)
db2 = np.sum(delta2, axis=0)
delta1 = np.dot(delta2, self.W2.T) * self.sigmoid_derivative(self.a1)
dW1 = np.dot(X.T, delta1)
db1 = np.sum(delta1, axis=0)
self.W2 += learning_rate * dW2
self.b2 += learning_rate * db2
self.W1 += learning_rate * dW1
self.b1 += learning_rate * db1
return 0.5 * np.power(y - y_pred, 2)
def train(self, X, y, learning_rate, num_epochs):
loss_history = []
for epoch in range(num_epochs):
y_pred = self.forward(X)
loss = self.backward(X, y, y_pred, learning_rate)
loss_history.append(np.mean(loss))
if epoch % 100 == 0:
print("Epoch %d loss: %.4f" % (epoch, np.mean(loss)))
return loss_history
```
在这个示例中,我们定义了一个 NeuralNetwork 类,其中包括了 sigmoid()、sigmoid_derivative()、forward() 和 backward() 方法,分别用于计算 sigmoid 函数、前向传播、反向传播和梯度下降。然后,我们定义了 train() 方法,用于训练神经网络模型,并返回 loss_history 变量。
在训练过程中,我们使用 forward() 方法计算预测结果,然后使用 backward() 方法计算误差,并更新网络参数。同时,我们记录每一轮训练的误差,并在每 100 轮训练时输出当前的误差。
最后,我们可以使用以下代码来训练模型并输出 loss_history:
```python
nn = NeuralNetwork(2, 5, 1)
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([[0], [1], [1], [0]])
learning_rate = 0.1
num_epochs = 1000
loss_history = nn.train(X, y, learning_rate, num_epochs)
print(loss_history)
```
阅读全文